Skip to main content

Design and Simulation of a Self-adaptive Fuzzy-PID Controller for an Autonomous Underwater Vehicle

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10462))

Included in the following conference series:

  • 5901 Accesses

Abstract

In recent years, AUV (autonomous underwater vehicle) has been applied to many fields, such as offshore oil exploitation, underwater target detection, military applications and so on, which raises a higher demand for accuracy control of AUV. In this paper, for the rim-drive dead zone and system nonlinearity problem of “Swordfish II” autonomous underwater vehicle in the actual control process, according to the shape and motion characteristics of the AUV, the six DOF (degrees of freedom) dynamic model is established under MATLAB/Simulink. The fuzzy control theory and the traditional PID control algorithm are combined to design a fuzzy-PID controller. Finally, we construct the simulation system. The simulation results show that the designed controller can control the AUV model and solve the dead zone problem well, and the fuzzy PID controller has better control effect than the traditional pid controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajmal, M., Labeeb, M., Dev, D.V.: Fractional order PID controller for depth control of autonomous underwater vehicle using frequency response shaping approach. In: 2014 Annual International Conference on Emerging Research Areas: Magnetics, Machines and Drives (AICERA/iCMMD), pp. 1–6. IEEE (2014)

    Google Scholar 

  2. Carreras, M., Candela, C., Ribas, D., Mallios, A., Magí, L., Vidal, E., Palomeras, N., Ridao, P.: Sparus ii, design of a lightweight hovering auv. In: Proceedings of the 5th International Workshop on Marine Technology (MARTECH), Girona, Spain, vol. 911, p. 163164 (2013)

    Google Scholar 

  3. Chemori, A., Kuusmik, K., Salumäe, T., Kruusmaa, M.: Depth control of the biomimetic U-CAT turtle-like auv with experiments in real operating conditions. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4750–4755. IEEE (2016)

    Google Scholar 

  4. Chen, Q., Chen, T., Zhang, Y.: Research of GA-based PID for AUV motion control. In: International Conference on Mechatronics and Automation, ICMA 2009, pp. 4446–4451. IEEE (2009)

    Google Scholar 

  5. Dong, Z., Wan, L., Liu, T., Zhuang, J.: Heading control of an AUV based on mamdani fuzzy inference (2015)

    Google Scholar 

  6. Guo, J., Chiu, F., Wang, C.C.: Adaptive control of an autonomous underwater vehicle testbed using neural networks. In: OCEANS 1995. MTS/IEEE. Challenges of Our Changing Global Environment, Conference Proceedings, vol. 2, pp. 1033–1039. IEEE (1995)

    Google Scholar 

  7. Hanai, A., Choi, H.T., Choi, S.K., Yuh, J.: Experimental study on fine motion control of underwater robots. Adv. Robot. 18(10), 963–978 (2004)

    Article  Google Scholar 

  8. Hu, B., Tian, H., Qian, J., Xie, G., Mo, L., Zhang, S.: A fuzzy-PID method to improve the depth control of AUV. In: 2013 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1528–1533. IEEE (2013)

    Google Scholar 

  9. Khodayari, M.H., Balochian, S.: Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller. J. Mar. Sci. Technol. 20(3), 559–578 (2015)

    Article  Google Scholar 

  10. Li, J.H., Lee, P.M.: A neural network adaptive controller design for free-pitch-angle diving behavior of an autonomous underwater vehicle. Robot. Auton. Syst. 52(2), 132–147 (2005)

    Article  Google Scholar 

  11. Lorentz, J., Yuh, J.: A survey and experimental study of neural network AUV control. In: Proceedings of the 1996 Symposium on Autonomous Underwater Vehicle Technology, AUV 1996, pp. 109–116. IEEE (1996)

    Google Scholar 

  12. Nag, A., Patel, S.S., Akbar, S.: Fuzzy logic based depth control of an autonomous underwater vehicle. In: 2013 International Multi-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), pp. 117–123. IEEE (2013)

    Google Scholar 

  13. Radmehr, N., Kharrati, H., Bayati, N.: Optimized design of fractional-order PID controllers for autonomous underwater vehicle using genetic algorithm. In: 2015 9th International Conference on Electrical and Electronics Engineering (ELECO), pp. 729–733. IEEE (2015)

    Google Scholar 

  14. Rout, R., Subudhi, B.: Inverse optimal self-tuning PID control design for an autonomous underwater vehicle. Int. J. Syst. Sci. 48(2), 367–375 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Song, F., Smith, S.M.: Design of sliding mode fuzzy controllers for an autonomous underwater vehicle without system model. In: Oceans 2000 MTS/IEEE Conference and Exhibition, vol. 2, pp. 835–840. IEEE (2000)

    Google Scholar 

  16. Wang, B., Wan, L., Xu, Y.R., Qin, Z.B.: Modeling and simulation of a mini AUV in spatial motion. J. Mar. Sci. Appl. 8(1), 7–12 (2009)

    Article  Google Scholar 

  17. Wang, J.S., Lee, C.G.: Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle. IEEE Trans. Robot. Autom. 19(2), 283–295 (2003)

    Article  Google Scholar 

  18. Wang, Y., Shen, Y., Wang, K., Sha, Q., He, B., Yan, T.: Fuzzy controller used smoothing function for depth control of autonomous underwater vehicle. In: OCEANS 2016-Shanghai, pp. 1–5. IEEE (2016)

    Google Scholar 

  19. Wu, J., Han, J., Yin, Y., Chen, G.: Variable universe based fuzzy control system design for AUV. In: OCEANS 2016-Shanghai, pp. 1–5. IEEE (2016)

    Google Scholar 

  20. Zhang, G., Du, C., Huang, H., Wu, H.: Nonlinear depth control in under-actuated AUV. In: 2016 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 2482–2486. IEEE (2016)

    Google Scholar 

  21. Zhang, W., Wang, H., Bian, X., Yan, Z., Xia, G.: The application of self-tuning fuzzy PID control method to recovering AUV. In: Oceans, 2012, pp. 1–5. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhao, J., Yi, W., Peng, Y., Peng, X. (2017). Design and Simulation of a Self-adaptive Fuzzy-PID Controller for an Autonomous Underwater Vehicle. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10462. Springer, Cham. https://doi.org/10.1007/978-3-319-65289-4_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65289-4_80

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65288-7

  • Online ISBN: 978-3-319-65289-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics