Skip to main content

Solving a New Constrained Minimization Problem for Image Deconvolution

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10463))

Included in the following conference series:

  • 4030 Accesses

Abstract

Though nature images generally consist of edges and homogeneous regions, most image deconvolution approaches will result in unnaturally sharp image estimations, since they tend to overemphasize sharpness while ignoring smoothness. To balance these two significant image properties, this paper presents a novel analysis-based image deconvolution approach based mainly on alternating minimization and variable splitting. The presented approach focuses on a new method of solving a constrained minimization problem which is derived from a universal model and is used to model the image deconvolution. By alternating minimization with variable splitting, the proposed image deconvolution model is firstly converted to an equivalent model, and then decoupled into a number of sub-problems. These sub-problems are alternately handled using a corresponding iterative method to obtain the solution for the proposed image deconvolution model. The presented approach has been demonstrated to be effective and superior to several state-of-the-art approaches for image deconvolution applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamarik, U., Palm, R., Raus, T.: A family of rules for parameter choice in Tikhonov regularization of ill-posed problems with inexact noise level. J. Comput. Appl. Math. 236, 2146–2157 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bertero, M., Boccacci, P., Talenti, G., Zanella, R., Zanni, L.: A discrepancy principle for poisson data. Inverse Prob. 26, 105004 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Reichel, L., Sgallari, F., Ye, Q.: Tikhonov regularization based on generalized Krylov subspace methods. Appl. Numer. Math. 62, 1215–1228 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Neuman, A., Reichel, L., Sadok, H.: Implementations of range restricted iterative methods for linear discrete ill-posed problems. Linear Algebra Appl. 436, 3974–3990 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Paul, G., Cardinale, J., Sbalzarini, I.F.: Coupling image restoration and segmentation: a generalized linear model/Bregman perspective. Int. J. Comput. Vis. 104, 69–93 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chan, R.H., Tao, M., Yuan, X.: Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM J. Imaging Sci. 6, 680–697 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Perrone, D., Favaro, P.: Total variation blind deconvolution: the devil is in the details. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2909–2916. IEEE Press, New York (2014)

    Google Scholar 

  8. Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T.S., Yan, S.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98, 1031–1044 (2010)

    Article  Google Scholar 

  9. Figueiredo, M.A.T., Nowak, R.D.: A bound optimization approach to wavelet-based image deconvolution. In: IEEE International Conference on Image Processing, pp. 782–785. IEEE Press, New York (2005)

    Google Scholar 

  10. Bioucas-Dias, J.M., Figueiredo, M.A.T.: A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16, 2992–3004 (2007)

    Article  MathSciNet  Google Scholar 

  11. Pan, H., Blu, T.: An iterative linear expansion of thresholds for \(\ell \)1-based image restoration. IEEE Trans. Image Process. 22, 3715–3728 (2013)

    Article  Google Scholar 

  12. Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22, 1620–1630 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cai, J., Osher, S., Shen, Z.: Split Bregman methods and frame based image restoration. Multiscale Model. Simul. 8, 337–369 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Zhang, Y., Dong, B., Lu, Z.: l0 minimization for wavelet frame based image restoration. Math. Comput. 82, 995–1015 (2013)

    Article  MATH  Google Scholar 

  15. Matakos, A., Ramani, S., Fessler, J.A.: Accelerated edge-preserving image restoration without boundary artifacts. IEEE Trans. Image Process. 22, 2019–2029 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Almeida, M.S.C., Figueiredo, M.A.T.: Deconvolving images with unknown boundaries using the alternating direction method of multipliers. IEEE Trans. Image Process. 22, 3074–3086 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, Cambridge (2009)

    MATH  Google Scholar 

  18. Zuo, W., Lin, Z.: A generalized accelerated proximal gradient approach for total-variation-based image restoration. IEEE Trans. Image Process. 20, 2748–2759 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chen, Y., Hager, W., Huang, F., Phan, D., Ye, X.: Fast algorithms for image reconstruction with application to partially parallel MR imaging. SIAM J. Imaging Sci. 5, 90–118 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Qin, Z., Goldfarb, D., Ma, S.: An alternating direction method for total variation denoising. Optim. Method Softw. 30, 594–615 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57, 2479–2493 (2007)

    Article  MathSciNet  Google Scholar 

  22. Yang, J., Zhang, Y., Yin, W.: An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J. Sci. Comput. 31, 2842–2865 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by Anhui Provincial Natural Science Foundation (No. 1608085QF150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xiao, S., Zhou, Y., Wei, L. (2017). Solving a New Constrained Minimization Problem for Image Deconvolution. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10463. Springer, Cham. https://doi.org/10.1007/978-3-319-65292-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65292-4_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65291-7

  • Online ISBN: 978-3-319-65292-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics