Abstract
Aiming at eliminating vibration generated during the motion state switch of robotic joints, this study proposes a magnetorheological fluids (MRFs) based soft actuator to achieve semi-active vibration control. In this paper, the configuration of the MRFs actuator is described firstly, followed by the theoretical modeling of the magnetic circuit and the transmitted torque. Then, the structural model of the actuator is designed and presented. After these, the influences of working induction and speed difference on both total transmitted torque and controllable coefficient are numerically calculated. Finally, an electromagnetic simulation is carried out with ANSYS 10.0® to verify the designed magnetic circuit of the actuator. The results indicate that the working induction holds a strong impact on both total transmitted torque and controllable coefficient; however, the influences of speed difference were relatively slight. Moreover, the designed circuit is proved to fulfill the requirements of both induction intensity and uniformity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dang, Q.V., Nielsen, I., Steger-Jensen, K., et al.: Scheduling a single mobile robot for part-feeding tasks of production lines. J. Intell. Manuf. 25, 1271–1287 (2014). doi:10.1007/s10845-013-0729-y
Shin, H., Kim, S., Jeong, J., et al.: Stiffness enhancement of a redundantly actuated parallel machine tool by dual support rims. Int. J. Precis. Eng. Manufact. 13, 1539–1547 (2012). doi:10.1007/s12541-012-0203-3
Zi, B., Sun, H., Zhu, Z., et al.: The dynamics and sliding mode control of multiple cooperative welding robot manipulators. Int. J. Adv. Rob. Syst. 9, 1–10 (2012). doi:10.5772/50641
Dzitac, P., Mazid, A.M.: An efficient control configuration development for a high-speed robotic palletizing system. In: IEEE Conference on Robotics, Automation and Mechatronics, pp. 140–145 (2008). doi:10.1109/RAMECH.2008.4681379
Liu, X.J., Li, J., Zhou, Y.: Kinematic optimal design of a 2-degree-of-freedom 3-parallelogram planar parallel manipulator. Mech. Mach. Theory 87, 1–17 (2015). doi:10.1016/j.mechmachtheory.2014.12.014
Wang, G., Cheng, J., Li, R., et al.: A new point cloud slicing based path planning algorithm for robotic spray painting. In: IEEE International Conference on Robotics and Biomimetics, pp. 1717–1722 (2015). doi:10.1109/ROBIO.2015.7419019
Zi, B., Duan, B.Y., Du, J.L., et al.: Dynamic modeling and active control of a cable-suspended parallel robot. Mechatronics 18, 1–12 (2008). doi:10.1016/j.mechatronics.2007.09.004
Qian, S., Zi, B., Ding, H.: Dynamics and trajectory tracking control of cooperative multiple mobile cranes. Nonlinear Dyn. 83, 89–108 (2016). doi:10.1007/s11071-015-2313-9
Zi, B., Sun, H., Zhang, D.: Design, analysis and control of a winding hybrid-driven cable parallel manipulator. Rob. Comput.-Integr. Manufact. 48, 196–208 (2017). doi:10.1016/j.rcim.2017.04.002
Kumagai, S., Ohishi, K., Shimada, N., et al.: High-performance robot motion control based on zero-phase notch filter for industrial robot. In: 11th IEEE International Workshop on Advanced Motion Control, pp. 626–630 (2010). doi:10.1109/AMC.2010.5464060
Zi, B., Lin, J., Qian, S.: Localization, obstacle avoidance planning and control of cooperative cable parallel robots for multiple mobile cranes. Rob. Comput. Integr. Manufact. 34, 105–123 (2015). doi:10.1016/j.rcim.2014.11.005
Wang, D., Zi, B., Zeng, Y., et al.: Temperature-dependent material properties of the components of magnetorheological fluids. J. Mater. Sci. 49, 8459–8470 (2014). doi:10.1007/s10853-014-8556-x
Jang, K.I., Nam, E., Lee, C.Y., et al.: Mechanism of synergetic material removal by electrochemomechanical magnetorheological polishing[J]. Int. J. Mach. Tools Manuf. 70, 88–92 (2013). doi:10.1016/j.ijmachtools.2013.03.011
Wang, D., Zi, B., Zeng, Y., et al.: Measurement of temperature-dependent mechanical properties of magnetorheological fluids using a parallel disk shear stress testing device. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 231, 1725–1737 (2017). doi:10.1177/0954406215621099
Xie, H.L., Liu, Z.B., Yang, J.Y., et al.: Modelling of magnetorheological damper for intelligent bionic leg and simulation of knee joint movement control. Int. J. Simul. Modell. 312, 399–417 (2016). doi:10.2507/IJSIMM15(1)CO2
Wang, D.M., Hou, Y.F., Tian, Z.Z.: A novel high-torque magnetorheological brake with a water cooling method for heat dissipation. Smart Mater. Struct. 22, 025019 (2013). doi:10.1088/0964-1726/22/2/025019
Sarkar, C., Hirani, H.: Development of a magnetorheological brake with a slotted disc. Proc. Inst. Mech. Eng. Part D: J. Automobile Eng. 229, 1907–1924 (2015). doi:10.1177/0954407015574204
Wang, D., Zi, B., Zeng, Y., et al.: An investigation of thermal characteristics of a liquid-cooled magnetorheological fluid-based clutch. Smart Mater. Struct. 24, 055020 (2015). doi:10.1088/0964-1726/24/5/055020
Weber, F.: Semi-active vibration absorber based on real-time controlled MR damper. Mech. Syst. Signal Process. 46, 272–288 (2014). doi:10.1016/j.ymssp.2014.01.017
Rossa, C., Lozada, J., Micaelli, A.: A new hybrid actuator approach for force-feedback devices. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4054–4059 (2012). doi:10.1109/IROS.2012.6385784
Blake, J., Gurocak, H.B.: Haptic glove with MR brakes for virtual reality. IEEE/ASME Trans. Mechatron. 14, 606–615 (2009). doi:10.1109/TMECH.2008.2010934
Chen, J.Z., Liao, W.H.: Design, testing and control of a magnetorheological actuator for assistive knee braces. Smart Mater. Struct. 19, 035029 (2010). doi:10.1088/0964-1726/19/3/035029
Li, C., Tokuda, M., Furusho, J., et al.: Research and development of the intelligently-controlled prosthetic ankle joint. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, pp. 1114–1119 (2006). doi:10.1109/ICMA.2006.257781
Pettersson, A., Davis, S., Gray, J.O., et al.: Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes. J. Food Eng. 98, 332–338 (2010). doi:10.1016/j.jfoodeng.2009.11.020
Kikuchi, T., Oda, K., Furusho, J.: Leg-robot for demonstration of spastic movements of brain-injured patients with compact magnetorheological fluid clutch. Adv. Robot. 24, 671–686 (2010). doi:10.1163/016918610X493534
Karakoc, K., Park, E.J., Suleman, A.: Design considerations for an automotive magnetorheological brake. Mechatronics 18, 434–447 (2008). doi:10.1016/j.mechatronics.2008.02.003
Wang, D., Hou, Y.: Design and experimental evaluation of a multidisk magnetorheological fluid actuator. J. Intell. Mater. Syst. Struct. 24, 640–650 (2013). doi:10.1177/1045389X12470305
Acknowledgment
The authors wish to acknowledge the National Natural Science Foundation of China (grant no. 51505114), the Anhui Provincial Natural Science Foundation (grant no. 1608085QE116), the China Postdoctoral Science Foundation funded project (grant no. 2015M571919), and the Fundamental Research Funds for the Central Universities (grant no. JZ2016HGTB0717) for their financial supports of this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Wang, D., Yao, L., Pang, J., Cao, Z. (2017). Design, Modeling and Analysis of a Magnetorheological Fluids-Based Soft Actuator for Robotic Joints. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10464. Springer, Cham. https://doi.org/10.1007/978-3-319-65298-6_67
Download citation
DOI: https://doi.org/10.1007/978-3-319-65298-6_67
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-65297-9
Online ISBN: 978-3-319-65298-6
eBook Packages: Computer ScienceComputer Science (R0)