Skip to main content

Design, Modeling and Analysis of a Magnetorheological Fluids-Based Soft Actuator for Robotic Joints

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10464))

Included in the following conference series:

  • 5320 Accesses

Abstract

Aiming at eliminating vibration generated during the motion state switch of robotic joints, this study proposes a magnetorheological fluids (MRFs) based soft actuator to achieve semi-active vibration control. In this paper, the configuration of the MRFs actuator is described firstly, followed by the theoretical modeling of the magnetic circuit and the transmitted torque. Then, the structural model of the actuator is designed and presented. After these, the influences of working induction and speed difference on both total transmitted torque and controllable coefficient are numerically calculated. Finally, an electromagnetic simulation is carried out with ANSYS 10.0® to verify the designed magnetic circuit of the actuator. The results indicate that the working induction holds a strong impact on both total transmitted torque and controllable coefficient; however, the influences of speed difference were relatively slight. Moreover, the designed circuit is proved to fulfill the requirements of both induction intensity and uniformity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dang, Q.V., Nielsen, I., Steger-Jensen, K., et al.: Scheduling a single mobile robot for part-feeding tasks of production lines. J. Intell. Manuf. 25, 1271–1287 (2014). doi:10.1007/s10845-013-0729-y

    Article  Google Scholar 

  2. Shin, H., Kim, S., Jeong, J., et al.: Stiffness enhancement of a redundantly actuated parallel machine tool by dual support rims. Int. J. Precis. Eng. Manufact. 13, 1539–1547 (2012). doi:10.1007/s12541-012-0203-3

    Article  Google Scholar 

  3. Zi, B., Sun, H., Zhu, Z., et al.: The dynamics and sliding mode control of multiple cooperative welding robot manipulators. Int. J. Adv. Rob. Syst. 9, 1–10 (2012). doi:10.5772/50641

    Article  Google Scholar 

  4. Dzitac, P., Mazid, A.M.: An efficient control configuration development for a high-speed robotic palletizing system. In: IEEE Conference on Robotics, Automation and Mechatronics, pp. 140–145 (2008). doi:10.1109/RAMECH.2008.4681379

  5. Liu, X.J., Li, J., Zhou, Y.: Kinematic optimal design of a 2-degree-of-freedom 3-parallelogram planar parallel manipulator. Mech. Mach. Theory 87, 1–17 (2015). doi:10.1016/j.mechmachtheory.2014.12.014

    Article  Google Scholar 

  6. Wang, G., Cheng, J., Li, R., et al.: A new point cloud slicing based path planning algorithm for robotic spray painting. In: IEEE International Conference on Robotics and Biomimetics, pp. 1717–1722 (2015). doi:10.1109/ROBIO.2015.7419019

  7. Zi, B., Duan, B.Y., Du, J.L., et al.: Dynamic modeling and active control of a cable-suspended parallel robot. Mechatronics 18, 1–12 (2008). doi:10.1016/j.mechatronics.2007.09.004

    Article  Google Scholar 

  8. Qian, S., Zi, B., Ding, H.: Dynamics and trajectory tracking control of cooperative multiple mobile cranes. Nonlinear Dyn. 83, 89–108 (2016). doi:10.1007/s11071-015-2313-9

    Article  MathSciNet  MATH  Google Scholar 

  9. Zi, B., Sun, H., Zhang, D.: Design, analysis and control of a winding hybrid-driven cable parallel manipulator. Rob. Comput.-Integr. Manufact. 48, 196–208 (2017). doi:10.1016/j.rcim.2017.04.002

    Article  Google Scholar 

  10. Kumagai, S., Ohishi, K., Shimada, N., et al.: High-performance robot motion control based on zero-phase notch filter for industrial robot. In: 11th IEEE International Workshop on Advanced Motion Control, pp. 626–630 (2010). doi:10.1109/AMC.2010.5464060

  11. Zi, B., Lin, J., Qian, S.: Localization, obstacle avoidance planning and control of cooperative cable parallel robots for multiple mobile cranes. Rob. Comput. Integr. Manufact. 34, 105–123 (2015). doi:10.1016/j.rcim.2014.11.005

    Article  Google Scholar 

  12. Wang, D., Zi, B., Zeng, Y., et al.: Temperature-dependent material properties of the components of magnetorheological fluids. J. Mater. Sci. 49, 8459–8470 (2014). doi:10.1007/s10853-014-8556-x

    Article  Google Scholar 

  13. Jang, K.I., Nam, E., Lee, C.Y., et al.: Mechanism of synergetic material removal by electrochemomechanical magnetorheological polishing[J]. Int. J. Mach. Tools Manuf. 70, 88–92 (2013). doi:10.1016/j.ijmachtools.2013.03.011

    Article  Google Scholar 

  14. Wang, D., Zi, B., Zeng, Y., et al.: Measurement of temperature-dependent mechanical properties of magnetorheological fluids using a parallel disk shear stress testing device. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 231, 1725–1737 (2017). doi:10.1177/0954406215621099

    Article  Google Scholar 

  15. Xie, H.L., Liu, Z.B., Yang, J.Y., et al.: Modelling of magnetorheological damper for intelligent bionic leg and simulation of knee joint movement control. Int. J. Simul. Modell. 312, 399–417 (2016). doi:10.2507/IJSIMM15(1)CO2

    Google Scholar 

  16. Wang, D.M., Hou, Y.F., Tian, Z.Z.: A novel high-torque magnetorheological brake with a water cooling method for heat dissipation. Smart Mater. Struct. 22, 025019 (2013). doi:10.1088/0964-1726/22/2/025019

    Article  Google Scholar 

  17. Sarkar, C., Hirani, H.: Development of a magnetorheological brake with a slotted disc. Proc. Inst. Mech. Eng. Part D: J. Automobile Eng. 229, 1907–1924 (2015). doi:10.1177/0954407015574204

    Article  Google Scholar 

  18. Wang, D., Zi, B., Zeng, Y., et al.: An investigation of thermal characteristics of a liquid-cooled magnetorheological fluid-based clutch. Smart Mater. Struct. 24, 055020 (2015). doi:10.1088/0964-1726/24/5/055020

    Article  Google Scholar 

  19. Weber, F.: Semi-active vibration absorber based on real-time controlled MR damper. Mech. Syst. Signal Process. 46, 272–288 (2014). doi:10.1016/j.ymssp.2014.01.017

    Article  Google Scholar 

  20. Rossa, C., Lozada, J., Micaelli, A.: A new hybrid actuator approach for force-feedback devices. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4054–4059 (2012). doi:10.1109/IROS.2012.6385784

  21. Blake, J., Gurocak, H.B.: Haptic glove with MR brakes for virtual reality. IEEE/ASME Trans. Mechatron. 14, 606–615 (2009). doi:10.1109/TMECH.2008.2010934

    Article  Google Scholar 

  22. Chen, J.Z., Liao, W.H.: Design, testing and control of a magnetorheological actuator for assistive knee braces. Smart Mater. Struct. 19, 035029 (2010). doi:10.1088/0964-1726/19/3/035029

    Article  Google Scholar 

  23. Li, C., Tokuda, M., Furusho, J., et al.: Research and development of the intelligently-controlled prosthetic ankle joint. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, pp. 1114–1119 (2006). doi:10.1109/ICMA.2006.257781

  24. Pettersson, A., Davis, S., Gray, J.O., et al.: Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes. J. Food Eng. 98, 332–338 (2010). doi:10.1016/j.jfoodeng.2009.11.020

    Article  Google Scholar 

  25. Kikuchi, T., Oda, K., Furusho, J.: Leg-robot for demonstration of spastic movements of brain-injured patients with compact magnetorheological fluid clutch. Adv. Robot. 24, 671–686 (2010). doi:10.1163/016918610X493534

    Article  Google Scholar 

  26. Karakoc, K., Park, E.J., Suleman, A.: Design considerations for an automotive magnetorheological brake. Mechatronics 18, 434–447 (2008). doi:10.1016/j.mechatronics.2008.02.003

    Article  Google Scholar 

  27. Wang, D., Hou, Y.: Design and experimental evaluation of a multidisk magnetorheological fluid actuator. J. Intell. Mater. Syst. Struct. 24, 640–650 (2013). doi:10.1177/1045389X12470305

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge the National Natural Science Foundation of China (grant no. 51505114), the Anhui Provincial Natural Science Foundation (grant no. 1608085QE116), the China Postdoctoral Science Foundation funded project (grant no. 2015M571919), and the Fundamental Research Funds for the Central Universities (grant no. JZ2016HGTB0717) for their financial supports of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoming Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, D., Yao, L., Pang, J., Cao, Z. (2017). Design, Modeling and Analysis of a Magnetorheological Fluids-Based Soft Actuator for Robotic Joints. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10464. Springer, Cham. https://doi.org/10.1007/978-3-319-65298-6_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65298-6_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65297-9

  • Online ISBN: 978-3-319-65298-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics