Skip to main content

Autonomous Interactive Object Manipulation and Navigation Capabilities for an Intelligent Wheelchair

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10423))

Included in the following conference series:

Abstract

This paper aims to develop grasping and manipulation capability along with autonomous navigation and localization in a wheelchair-mounted robotic arm to serve patients. Since the human daily environment is dynamically varied, it is not possible to enable the robot to know all the objects that would be grasped. We present an approach to enable the robot to detect, grasp and manipulate unknown objects. We propose an approach to construct the local reference frame that can estimate the object pose for detecting the grasp pose of an object. The main objective of this paper is to present the grasping and manipulation approach along with a navigating and localization method that can be performed in the human daily environment. A grid map and a match algorithm is used to enable the wheelchair to localize itself using a low-power computer. The experimental results show that the robot can manipulate multiple objects and can localize itself with great accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Their code is available at https://github.com/nshafii/inesc_robotis_arm.

  2. 2.

    https://www.dropbox.com/sh/8tt42g2obbvrhcb/AABDjCTIrcJ5izO0MlEgvK4_a?dl=0.

References

  1. Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven grasp synthesisa survey. IEEE Trans. Robot. 30(2), 289–309 (2014)

    Article  Google Scholar 

  2. Censi, A.: An ICP variant using a point-to-line metric. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 19–25. IEEE (2008)

    Google Scholar 

  3. Holz, D., Holzer, S., Rusu, R.B., Behnke, S.: Real-time plane segmentation using RGB-D cameras. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS, vol. 7416, pp. 306–317. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32060-6_26

    Chapter  Google Scholar 

  4. Hsiao, K., Chitta, S., Ciocarlie, M., Jones, E.G.: Contact-reactive grasping of objects with partial shape information. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1228–1235. IEEE (2010)

    Google Scholar 

  5. Kasaei, S.H., Shafii, N., Lopes, L.S., Tomé, A.M.: Object learning and grasping capabilities for robotic home assistants. LNCS, vol. 9776. Springer, Cham (2016)

    Google Scholar 

  6. Kim, D.J., Wang, Z., Paperno, N., Behal, A.: System design and implementation of UCF-MANUS an intelligent assistive robotic manipulator. IEEE/ASME Trans. Mechatron. 19(1), 225–237 (2014)

    Article  Google Scholar 

  7. Ktistakis, I.P., Bourbakis, N.G.: A survey on robotic wheelchairs mounted with robotic arms. In: 2015 National Aerospace and Electronics Conference (NAECON), pp. 258–262. IEEE (2015)

    Google Scholar 

  8. Lauer, M., Lange, S., Riedmiller, M.: Calculating the perfect match: an efficient and accurate approach for robot self-localization. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS, vol. 4020, pp. 142–153. Springer, Heidelberg (2006). doi:10.1007/11780519_13

    Chapter  Google Scholar 

  9. Library, P.C.: Plane model segmentation documentation (2017). pointclouds.org/documentation/tutorials/planar_segmentation.php. Accessed 10 Feb 2017

  10. Maheu, V., Archambault, P.S., Frappier, J., Routhier, F.: Evaluation of the JACO robotic arm: clinico-economic study for powered wheelchair users with upper-extremity disabilities. In: 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1–5. IEEE (2011)

    Google Scholar 

  11. Miller, A.T., Allen, P.K.: Graspit! a versatile simulator for robotic grasping. IEEE Robot. Autom. Mag. 11(4), 110–122 (2004)

    Article  Google Scholar 

  12. Pinto, A.C.P.: Advanced Mobile Manipulation for Logistics in Hospitals or Laboratories (2016)

    Google Scholar 

  13. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5 (2009)

    Google Scholar 

  14. Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4. IEEE (2011)

    Google Scholar 

  15. Sobreira, H., Pinto, M., Moreira, A.P., Costa, P.G., Lima, J.: Robust robot localization based on the perfect match algorithm. In: Moreira, A.P., Matos, A., Veiga, G. (eds.) CONTROLO 2014. LNEE, vol. 321, pp. 607–616. Springer, Cham (2015). doi:10.1007/978-3-319-10380-8_58

    Chapter  Google Scholar 

  16. Sobreira, H., Rocha, L., Costa, C., Lima, J., Costa, P., Moreira, A.P.: 2D cloud template matching-a comparison between iterative closest point and perfect match. In: 2016 International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 53–59. IEEE (2016)

    Google Scholar 

  17. Tanaka, H., Sumi, Y., Matsumoto, Y.: Assistive robotic arm autonomously bringing a cup to the mouth by face recognition. In: 2010 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), pp. 34–39. IEEE (2010)

    Google Scholar 

  18. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. Intelligent Robotics and Autonomous Agents. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is financed by the ERDF European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme, and by National Funds through the FCT Fundao para a Ciłncia e a Tecnologia (Portuguese Foundation for Science and Technology) within project POCI-01-0145-FEDER-006961. P.C.M.A. Farias acknowledge support from CNPq/CsF PDE 233517/2014-6 for providing a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Shafii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Shafii, N., Farias, P.C.M.A., Sousa, I., Sobreira, H., Reis, L.P., Moreira, A.P. (2017). Autonomous Interactive Object Manipulation and Navigation Capabilities for an Intelligent Wheelchair. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H. (eds) Progress in Artificial Intelligence. EPIA 2017. Lecture Notes in Computer Science(), vol 10423. Springer, Cham. https://doi.org/10.1007/978-3-319-65340-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65340-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65339-6

  • Online ISBN: 978-3-319-65340-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics