Abstract
This paper aims to develop grasping and manipulation capability along with autonomous navigation and localization in a wheelchair-mounted robotic arm to serve patients. Since the human daily environment is dynamically varied, it is not possible to enable the robot to know all the objects that would be grasped. We present an approach to enable the robot to detect, grasp and manipulate unknown objects. We propose an approach to construct the local reference frame that can estimate the object pose for detecting the grasp pose of an object. The main objective of this paper is to present the grasping and manipulation approach along with a navigating and localization method that can be performed in the human daily environment. A grid map and a match algorithm is used to enable the wheelchair to localize itself using a low-power computer. The experimental results show that the robot can manipulate multiple objects and can localize itself with great accuracy.
Similar content being viewed by others
Notes
- 1.
Their code is available at https://github.com/nshafii/inesc_robotis_arm.
- 2.
References
Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven grasp synthesisa survey. IEEE Trans. Robot. 30(2), 289–309 (2014)
Censi, A.: An ICP variant using a point-to-line metric. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 19–25. IEEE (2008)
Holz, D., Holzer, S., Rusu, R.B., Behnke, S.: Real-time plane segmentation using RGB-D cameras. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS, vol. 7416, pp. 306–317. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32060-6_26
Hsiao, K., Chitta, S., Ciocarlie, M., Jones, E.G.: Contact-reactive grasping of objects with partial shape information. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1228–1235. IEEE (2010)
Kasaei, S.H., Shafii, N., Lopes, L.S., Tomé, A.M.: Object learning and grasping capabilities for robotic home assistants. LNCS, vol. 9776. Springer, Cham (2016)
Kim, D.J., Wang, Z., Paperno, N., Behal, A.: System design and implementation of UCF-MANUS an intelligent assistive robotic manipulator. IEEE/ASME Trans. Mechatron. 19(1), 225–237 (2014)
Ktistakis, I.P., Bourbakis, N.G.: A survey on robotic wheelchairs mounted with robotic arms. In: 2015 National Aerospace and Electronics Conference (NAECON), pp. 258–262. IEEE (2015)
Lauer, M., Lange, S., Riedmiller, M.: Calculating the perfect match: an efficient and accurate approach for robot self-localization. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS, vol. 4020, pp. 142–153. Springer, Heidelberg (2006). doi:10.1007/11780519_13
Library, P.C.: Plane model segmentation documentation (2017). pointclouds.org/documentation/tutorials/planar_segmentation.php. Accessed 10 Feb 2017
Maheu, V., Archambault, P.S., Frappier, J., Routhier, F.: Evaluation of the JACO robotic arm: clinico-economic study for powered wheelchair users with upper-extremity disabilities. In: 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1–5. IEEE (2011)
Miller, A.T., Allen, P.K.: Graspit! a versatile simulator for robotic grasping. IEEE Robot. Autom. Mag. 11(4), 110–122 (2004)
Pinto, A.C.P.: Advanced Mobile Manipulation for Logistics in Hospitals or Laboratories (2016)
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5 (2009)
Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4. IEEE (2011)
Sobreira, H., Pinto, M., Moreira, A.P., Costa, P.G., Lima, J.: Robust robot localization based on the perfect match algorithm. In: Moreira, A.P., Matos, A., Veiga, G. (eds.) CONTROLO 2014. LNEE, vol. 321, pp. 607–616. Springer, Cham (2015). doi:10.1007/978-3-319-10380-8_58
Sobreira, H., Rocha, L., Costa, C., Lima, J., Costa, P., Moreira, A.P.: 2D cloud template matching-a comparison between iterative closest point and perfect match. In: 2016 International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 53–59. IEEE (2016)
Tanaka, H., Sumi, Y., Matsumoto, Y.: Assistive robotic arm autonomously bringing a cup to the mouth by face recognition. In: 2010 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), pp. 34–39. IEEE (2010)
Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. Intelligent Robotics and Autonomous Agents. MIT Press, Cambridge (2005)
Acknowledgements
This work is financed by the ERDF European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme, and by National Funds through the FCT Fundao para a Ciłncia e a Tecnologia (Portuguese Foundation for Science and Technology) within project POCI-01-0145-FEDER-006961. P.C.M.A. Farias acknowledge support from CNPq/CsF PDE 233517/2014-6 for providing a scholarship.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Shafii, N., Farias, P.C.M.A., Sousa, I., Sobreira, H., Reis, L.P., Moreira, A.P. (2017). Autonomous Interactive Object Manipulation and Navigation Capabilities for an Intelligent Wheelchair. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H. (eds) Progress in Artificial Intelligence. EPIA 2017. Lecture Notes in Computer Science(), vol 10423. Springer, Cham. https://doi.org/10.1007/978-3-319-65340-2_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-65340-2_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-65339-6
Online ISBN: 978-3-319-65340-2
eBook Packages: Computer ScienceComputer Science (R0)