Skip to main content

A Stochastic Approach of SIRC Model Using Individual-Based Epidemiological Models

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10423))

Included in the following conference series:

Abstract

Mathematical models are important instruments in epidemiology to assist in analyzing epidemiological dynamics as well as possible dissemination controls. Classical model uses differential equations to describe dynamics of population over time. A widely used example is susceptible-infected-recovered (SIR) compartmental model. Such model has been used to obtain optimum control policies in different scenarios. This model has been enhanced to include dynamics of reinfection of disease including a new compartment, known as susceptible-infected-recovered-cross-immune (SIRC). An alternative model is to consider each individual as a string or vector of characteristic data and simulate the contagion and recovery processes by computational means. This type of model, referred in literature as individual based model (IBM) has advantage of being flexible as characteristics of each individual can be quite complex, involving, for instance, age, sex, pre-existing health conditions, environmental factors, social, and habits. However, it was not found in literature equivalence in an IBM model for SIRC model. Some works have shown the possibility of equivalence between IBM and SIR models, in order to simulate similar scenarios with models of different natures, in deterministic and stochastic case respectively. In this context, this work proposes implementation of an IBM stochastic model equivalent to SIRC model. Results show that equivalence is also possible only with the proper configuration of parameters of IBM model. Accuracy of equivalent model showed better with reduction of time step end increase the size of population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Filho, N.A., Rouquayrol, M.Z.: Introduo epidemiologia. Guanabara Koogan, Rio de Janeiro (2006)

    Google Scholar 

  2. Iacoviello, D., Stasio, N.: Optimal control for SIRC epidemic outbreak. Comput. Methods Programs Biomed. 110, 333–342 (2013)

    Article  Google Scholar 

  3. Capone, F., De Cataldis, V., De Luca, R.: On the nonlinear stability of an epidemic SEIR reaction-diffusion model. Ricerche di Matematica 62(1), 161–181 (2013)

    Article  MathSciNet  Google Scholar 

  4. Behncke, H.: Optimal control of deterministic epidemics. Optim. Control Appl. Methods 21(6), 269–285 (2000)

    Article  MathSciNet  Google Scholar 

  5. Cisternas, J., William, G.C., Levin, S., Kevrekidis, I.G.: Equation-free modelling of evolving diseases: coarse-grained computations with individual-based models. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 460, pp. 2761–2779. The Royal Society (2004)

    Google Scholar 

  6. Jódar, L., et al.: Nonstandard numerical methods for a mathematical model for influenza disease. Math. Comput. Simul. 79(3), 622–633 (2008)

    Article  MathSciNet  Google Scholar 

  7. Nie, L.-F., Teng, Z.-D., Guo, B.-Z.: A state dependent pulse control strategy for a SIRS epidemic system. Bull. Math. Biol. 75(10), 1697–1715 (2013)

    Article  MathSciNet  Google Scholar 

  8. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dinamics and Control. Oxford University Press, Oxford (1992)

    Google Scholar 

  9. El-Shahed, M., Alsaedi, A.: The fractional SIRC model and influenza A 2011, 9 (2011)

    Google Scholar 

  10. Wu, M., Wang, L., Li, M., Long, H.: An approach based on the SIR epidemic model and a genetic algorithm for optimizing product feature combinations in feature fatigue analysis (2013)

    Google Scholar 

  11. Ministério da Saúde Brasil. Boletim informativo de influenza (2012). http://portalsaude.saude.gov.br/portalsaude/noticia/6651/785/boletim-informativo-de-influenza:-semana-epidemiologica-32.html. acessado 1-maio-2013

  12. Giancotti, K.H.O., de Assis Dias, F., Teixeira, W.W.M., Nepomuceno, E.G., Kurcbart, S.M.: Anlise da estrutura do MBI: sensibilidade da taxa de infeco e da populao. In: Anais do XVIII Congresso Brasileiro de Automtica, Bonito, MS, In Em (2010)

    Google Scholar 

  13. Samanta, G.P.: Global dynamics of a nonautonomous SIRC model for influenza A with distributed time delay. Differ. Equ. Dyn. Syst. 18(4), 341–362 (2010)

    Article  MathSciNet  Google Scholar 

  14. Casagrandi, R., et al.: The SIRC model and influenza A. Math. Biosci. 200(2), 156–169 (2006)

    Article  MathSciNet  Google Scholar 

  15. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)

    Article  MathSciNet  Google Scholar 

  16. Galvão Filho, A.R., Galvão, R.K.H., Yoneyama, T.: Otimização da alocação temporal de recursos para combate a epidemias com transmissão sazonal atraves de metodos de barreira. In: Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, pp. 1–6 (2013)

    Google Scholar 

  17. Galvão Filho, A.R., Galvão, R.K.H., Yoneyama, T., Arruda, F.: Programação paralela cuda para simulação de modelos epidemiológicos baseados em indivíduos. In: Anais do X Simpósio Brasileiro de Automação Inteligente, pp. 241–246 (2011)

    Google Scholar 

  18. Galvão Filho, A.R., et al.: CUDA parallel programming for simulation of epidemiological models based on individuals. Math. Methods Appl. Sci. 39(3), 405–411 (2016)

    Article  MathSciNet  Google Scholar 

  19. Morton, R., Wickwire, K.H.: On the optimal control of a deterministic epidemic. Adv. Appl. Probab. 6(4), 622–635 (1974)

    Article  MathSciNet  Google Scholar 

  20. Arif, S., Olariu, S.: Efficient solution of a stochastic SI epidemic system. J. Supercomput. 62, 1385–1403 (2012)

    Article  Google Scholar 

  21. Grenfell, B.T., Bjørnstad, O.N., Finkenstädt, B.F.: Dynamics of measles epidemics: scaling noise, determinism, and predictability with the TSIR model. Ecol. Monogr. 72(2), 185–202 (2002)

    Article  Google Scholar 

  22. Kermack, W.O., Mckendrick, A.G.: A contribution to the mathematical theory of epidemics. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 115, no. 772, pp. 700–721 (1927). The Royal Society

    Article  Google Scholar 

  23. World Health Organization. Influenza (seasonal): Fact sheet n211 (2009). http://www.who.int/mediacentre/factsheets/fs211/en/. acessado 13-maio-2013

  24. Yoshida, N., Hara, T.: Global stability of a delayed SIR epidemic model with density dependent birth and death rates. J. Comput. Appl. Math. 201(2), 339–347 (2007)

    Article  MathSciNet  Google Scholar 

  25. Lu, Z., Chi, X., Chen, L.: The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission 36, 1039–1057 (2002)

    Google Scholar 

Download references

Acknowledgments

Authors would like to thank the brazilian research agencies CAPES, FAPEG and CNPq for the financial support provided to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arlindo Rodrigues Galvão Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Galvão Filho, A.R., de Lima, T.W., da Silva Soares, A., Coelho, C.J. (2017). A Stochastic Approach of SIRC Model Using Individual-Based Epidemiological Models. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H. (eds) Progress in Artificial Intelligence. EPIA 2017. Lecture Notes in Computer Science(), vol 10423. Springer, Cham. https://doi.org/10.1007/978-3-319-65340-2_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65340-2_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65339-6

  • Online ISBN: 978-3-319-65340-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics