Skip to main content

Private and Efficient Set Intersection Protocol for Big Data Analytics

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10393))

  • 2496 Accesses

Abstract

Private Set Intersection (PSI) is a fundamental multi-party computation primitive used to secure many political, commercial, and social applications. PSI allows mistrustful parties to compute the intersection of their private sets without leaking additional information. PSI protocols have been largely proposed for both the semi-honest and the malicious settings. Nevertheless, the semi-honest setting does not suffice in many realistic scenarios and security in the malicious setting is built upon cryptographic schemes, which require hard assumptions and induce a high computational cost. In this work, we propose a novel two-party PSI protocol secure under the mixed model, where the server may be semi-honest and the client may be malicious. We build our protocol upon matrix algebra without using any cryptographic schemes or non-standard assumptions and we provide simulation-based security proof. Our protocol achieves a linear asymptotic complexity of \(O(k_v+k_c)\) for communications and server computations, where \(k_v\) and \(k_c\) are sizes of the server and the client sets. Besides, we compare empirical performance of our solution to the insecure hashing solution used in practice. Experimental results reveal the efficiency and the scalability of our new PSI protocol, which makes it adequate for Big Data analytics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mezzour, G., Perrig, A., Gligor, V., Papadimitratos, P.: Privacy-preserving relationship path discovery in social networks. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 189–208. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10433-6_13

    Chapter  Google Scholar 

  2. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3_1

    Chapter  Google Scholar 

  3. Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering gattaca: efficient and secure testing of fully-sequenced human genomes. In: Proceedings of the 18th ACM Conference on Computer and Communications Security, CCS 2011, pp. 691–702. ACM, New York (2011)

    Google Scholar 

  4. Fischlin, M., Pinkas, B., Sadeghi, A.-R., Schneider, T., Visconti, I.: Secure set intersection with untrusted hardware tokens. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 1–16. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19074-2_1

    Chapter  Google Scholar 

  5. Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8_13

    Chapter  Google Scholar 

  6. Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from algebraic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 90–120. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7_4

    Chapter  Google Scholar 

  7. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on OT extension (2016)

    Google Scholar 

  8. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for realistic adversaries. J. Cryptol. 23(2), 281–343 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adversaries. J. Cryptol. 25(3), 383–433 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 175–203. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54365-8_8

    Chapter  Google Scholar 

  11. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5_34

    Chapter  Google Scholar 

  12. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, CCS 1993, pp. 62–73. ACM, New York (1993)

    Google Scholar 

  13. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8_2

    Chapter  Google Scholar 

  14. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  15. Lu, R., Zhu, H., Liu, X., Liu, J.K., Shao, J.: Toward efficient and privacy-preserving computing in big data era. IEEE Network 28(4), 46–50 (2014)

    Article  Google Scholar 

  16. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: On combining privacy with guaranteed output delivery in secure multiparty computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 483–500. Springer, Heidelberg (2006). doi:10.1007/11818175_29

    Chapter  Google Scholar 

  17. Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings of the Thirty-first Annual ACM Symposium on Theory of Computing, STOC 1999, pp. 245–254. ACM, New York (1999)

    Google Scholar 

  19. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30576-7_17

    Chapter  Google Scholar 

  20. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005). doi:10.1007/11535218_15

    Chapter  Google Scholar 

  21. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01957-9_8

    Chapter  Google Scholar 

  22. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. J. Cryptol. 23(3), 422–456 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data mining. J. Priv. Confid. 1(1), 5 (2009)

    Google Scholar 

  24. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to association rule mining. J. Comput. Secur. 13(4), 593–622 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakaria Gheid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gheid, Z., Challal, Y. (2017). Private and Efficient Set Intersection Protocol for Big Data Analytics. In: Ibrahim, S., Choo, KK., Yan, Z., Pedrycz, W. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2017. Lecture Notes in Computer Science(), vol 10393. Springer, Cham. https://doi.org/10.1007/978-3-319-65482-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65482-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65481-2

  • Online ISBN: 978-3-319-65482-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics