Abstract
Private Set Intersection (PSI) is a fundamental multi-party computation primitive used to secure many political, commercial, and social applications. PSI allows mistrustful parties to compute the intersection of their private sets without leaking additional information. PSI protocols have been largely proposed for both the semi-honest and the malicious settings. Nevertheless, the semi-honest setting does not suffice in many realistic scenarios and security in the malicious setting is built upon cryptographic schemes, which require hard assumptions and induce a high computational cost. In this work, we propose a novel two-party PSI protocol secure under the mixed model, where the server may be semi-honest and the client may be malicious. We build our protocol upon matrix algebra without using any cryptographic schemes or non-standard assumptions and we provide simulation-based security proof. Our protocol achieves a linear asymptotic complexity of \(O(k_v+k_c)\) for communications and server computations, where \(k_v\) and \(k_c\) are sizes of the server and the client sets. Besides, we compare empirical performance of our solution to the insecure hashing solution used in practice. Experimental results reveal the efficiency and the scalability of our new PSI protocol, which makes it adequate for Big Data analytics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mezzour, G., Perrig, A., Gligor, V., Papadimitratos, P.: Privacy-preserving relationship path discovery in social networks. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 189–208. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10433-6_13
Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3_1
Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering gattaca: efficient and secure testing of fully-sequenced human genomes. In: Proceedings of the 18th ACM Conference on Computer and Communications Security, CCS 2011, pp. 691–702. ACM, New York (2011)
Fischlin, M., Pinkas, B., Sadeghi, A.-R., Schneider, T., Visconti, I.: Secure set intersection with untrusted hardware tokens. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 1–16. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19074-2_1
Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8_13
Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from algebraic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 90–120. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7_4
Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on OT extension (2016)
Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for realistic adversaries. J. Cryptol. 23(2), 281–343 (2010)
Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adversaries. J. Cryptol. 25(3), 383–433 (2012)
Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 175–203. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54365-8_8
Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5_34
Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, CCS 1993, pp. 62–73. ACM, New York (1993)
Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8_2
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X_16
Lu, R., Zhu, H., Liu, X., Liu, J.K., Shao, J.: Toward efficient and privacy-preserving computing in big data era. IEEE Network 28(4), 46–50 (2014)
Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: On combining privacy with guaranteed output delivery in secure multiparty computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 483–500. Springer, Heidelberg (2006). doi:10.1007/11818175_29
Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000)
Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings of the Thirty-first Annual ACM Symposium on Theory of Computing, STOC 1999, pp. 245–254. ACM, New York (1999)
Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30576-7_17
Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005). doi:10.1007/11535218_15
Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01957-9_8
Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. J. Cryptol. 23(3), 422–456 (2010)
Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data mining. J. Priv. Confid. 1(1), 5 (2009)
Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to association rule mining. J. Comput. Secur. 13(4), 593–622 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Gheid, Z., Challal, Y. (2017). Private and Efficient Set Intersection Protocol for Big Data Analytics. In: Ibrahim, S., Choo, KK., Yan, Z., Pedrycz, W. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2017. Lecture Notes in Computer Science(), vol 10393. Springer, Cham. https://doi.org/10.1007/978-3-319-65482-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-65482-9_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-65481-2
Online ISBN: 978-3-319-65482-9
eBook Packages: Computer ScienceComputer Science (R0)