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Abstract. Over the last years, heterogeneous architectures have become
a de facto approach for improving the performance of numerous scientific
and industrial applications. However, developing for these architectures
is not straightforward: each processor demands its specific programming
paradigm and, often, certain applications are only well-suited to run on
a particular processing unit. Therefore, a major challenge arises when
programming for these platforms: to select the most suitable device and
routine implementation to solve a given problem. To deal with this is-
sue, this paper proposes a novel probabilistic-based selector that uses the
problem size to automatically choose the most appropriate version of a
same kernel. In order to analyze this approach, we have developed this
selector within the OmpSs programming framework and evaluated its ac-
curacy and performance gains when executing different implementations
of the general matrix-matrix multiplication. Finally, we also demonstrate
how this solution delivers a comparable performance with respect to a
runtime approach from the state-of-the-art.
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1 Introduction

In the recent years, the evolution of high performance computing has moved to-
wards heterogeneous platforms comprising multiple processing units with differ-
ent features and programming models [12]. Therefore, according to the needs, ap-
plication developers are able to benefit from the specific characteristics provided
by these architectures, e.g., SIMD capabilities of GPUs or low power consump-
tion of FPGAs. While the benefits of using these platforms have been clearly
defined, the challenges of exploiting heterogeneity have discouraged the adoption
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of heterogeneous programming models. These challenges include the inherent dif-
ficulties of diverse programming paradigms and the fact that certain processors
are only well-suited for applications with special demands. This has led to a pro-
gressive development of multiple architecture-specific implementations [5]. Thus,
an additional challenge arises when programming for these platforms: to select
the most convenient device and implementation to solve a given problem.
While a naive approach is to manually map tasks onto the underlying parallel
processors, runtime schedulers have demonstrated to be a better solution in these
scenarios [4]. Indeed, recent schedulers help in improving performance, since they
learn incrementally from past executions. This mechanism allows them to self-
tune applications by means of selecting the most appropriate kernel version and
processor [7]. To pave the way, this paper extends the current literature with a
novel probabilistic-based selector of alternate implementations for heterogeneous
platforms (PRISE). In order to implement and evaluate this selector, we have
leveraged the OmpSs programming framework instead of other solutions (such
as StarPU [2]), given that OmpSs is more usable and allows to easily integrate
new scheduling modules. Specifically, this work contributes with the following:

— We present an implementation selector that allows automatically choosing
the most suitable implementation of a same kernel using a probabilistic and
profile-guided approach.

— We incorporate the probabilistic selector as a scheduler into the OmpSs
programming framework and detail which modifications have been required
in its Mercurium compiler and Nanos++ runtime.

— We evaluate the proposed scheduler by analyzing the accuracy of the se-
lections made and the performance gains using the general matrix-matrix
multiplication as use case.

— We demonstrate how our scheduler self-tunes and delivers a comparable
performance with respect to a runtime approach from the state-of-the-art.
The rest of this document is organized as follows. Section 2 reviews a few

related works in the area. Section 3 describes the OmpSs programming frame-
work along with its two major components: the Mercurium compiler and the
Nanos+-+ runtime. Section 4 presents the probabilistic implementation selector
as for the main contribution of this paper. In Section 5, we evaluate our ap-
proach using the general matrix-matrix multiplication and compare it with an
already existing OmpSs scheduler. Finally, Section 6 closes this paper with a few
concluding remarks and future works.

2 Related work

Heterogeneous architectures, combining different processing units, have become
a very common scenario across the scientific community. Given that these pro-
cessing units have inherent advantages and drawbacks, highly-tuned implemen-
tations of a same algorithm have been developed to fully exploit them. For ex-
ample, several numerical libraries comprising highly tuned kernels, from BLAS
and LAPACK, are available for diverse computing architectures: cIBLAS [1] has



support for OpenCL processors, GSL [8] is targeted to multi-/many-core pro-
cessors, etc. This fact poses the need of selecting the most suitable pair device—
implementation to solve a given problem. To deal with this issue, the solutions
in the state-of-the-art have generally taken two directions: 7) runtime schedulers,
which are able to map and execute kernels from multiple libraries on the avail-
able processing units; and i) static approaches, which allow selecting at compile
time the most appropriate implementation according to historical data. In the
following, we review some works adopting these approaches.

Regarding the approaches making static selections, we find the work by Jun
et al. [13], which proposes an automatic system based on source code analysis
that maps user calls to optimized kernels. Similarly, Jie Shen et al. [11] propose
an analytic system for determining which hybrid programming configuration is
optimal to solve a given problem. Alternatively, the approach by Rio et al. [10]
presents an adaptive implementation selector that chooses, at compile time, the
tuple device-implementation that delivers the best performance.

In contrast with static approaches, dynamic solutions are also widely ex-
tended in the community. A well-known runtime selector is the versioning sched-
uler [9] from the OmpSs programming framework [7]. This scheduler chooses the
most appropriate task version among those marked as implementation alter-
natives. Another solution is the extension for the SkePu framework [6], which
leverages machine learning techniques to decide which of the available versions of
a given function offers the lowest execution time. Following a similar approach,
the selector presented in this paper uses a novel technique based on probabilities
and problem sizes that allows determining the best implementation at runtime.

3 The OmpSs programming model

The OmpSs programming model [3] is an effort to complement OpenMP with
new directives to support asynchronous parallelism on homogeneous and hetero-
geneous architectures. OmpSs extends the execution and memory models of the
OpenMP programming model in two main aspects. First, it leverages a runtime
based on thread-pool instead of the traditional fork-join model. Second, it is
designed to handle multiple physical addresses of the available processing units
of a heterogeneous platform. Therefore, the runtime takes care of where the data
resides and manages data transfers as tasks consume or produce them.

One of the key features of OmpSs is its support for pragma annotations in
function declarations or definitions with the well-known task directive. With
it, each time the OmpSs runtime encounters a function annotated with this
directive, a worker thread will run its associated code onto one of the available
processors. Furthermore, to provide heterogeneity, the target directive in task
declaration allows specifying the processor that must run its code.

In general, the OmpSs environment is mainly built on top of two major com-
ponents: the Mercurium compiler and Nanos++ runtime system. These compo-
nents are described as follows:



Mercurium is a source-to-source compilation infrastructure targeted to the C,
C++ and Fortran languages. The main goal of Mercurium is to detect the
OmpSs pragmas and substitute them with calls to the Nanos++ runtime.
The compiling phases of Mercurium are implemented as plugins, therefore
new modules can be included for supporting new features. Code modifica-
tions can be performed by introducing raw source code instead of using its
internal syntactic representation.

Nanos-++4 has been designed to serve as runtime to deal with the OmpSs pro-
gramming model. Its main goal is to manage asynchronous parallelism by
means of controlling data dependencies of tasks specified in the pragma-
annotated source codes. A remarkable feature of Nanos++ is the multiple
scheduling policies available for deciding the order of execution of tasks and
the resource where the tasks will be executed. These scheduling policies
are implemented as independent modules that are dynamically loaded at
runtime. An example of module supporting heterogeneity is the versioning
scheduler [9]. This module allows selecting the most appropriate implemen-
tation of a same task depending on the target device or the execution circum-
stances. This is enabled via the implements clause, which allows marking
alternate implementations of a same task targeted to different processing
units in a heterogeneous platform.

All in all, thanks to the flexible design and implementation of OmpSs pro-
gramming framework, it is very easy to extend any of its features, like adding
new directives and clauses to the OmpSs pragma annotations in the Mercurium
compiler or extending the Nanos++ runtime modules with a scheduler. In the
following section, we detail how we have leveraged these features to implement
PRISE within this framework.

4 The probabilistic implementation selector

This section introduces the probabilistic implementation selector (PRISE) as
for the main contribution of this paper. Specifically, we describe how we have
integrated this selector as a scheduling module into the OmpSs programming
framework and detail which modifications have been required in its Mercurium
compiler and Nanos++ runtime.

Fig. 1 depicts the compilation and execution framework of an OmpSs appli-
cation that is executed using the Nanos++ runtime along with PRISE. In a first
step, the Mercurium compiler performs a source-to-source transformation of the
pragma-annotated source codes and introduces the corresponding calls to the
Nanos++ runtime. Then, the resulting source code is compiled with a regular
C/C++ compiler, which finally generates the binary of the OmpSs application.
Afterwards, during the execution, the PRISE scheduler selects an implementa-
tion each time the task is run depending on the probabilities that are calculated
using historical data. These probabilities are accordingly updated by the corre-
sponding module at the end of the application run. Finally, the probabilities and
a summary of the historical data is dumped onto disk to guide future executions.
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Fig. 1: Workflow from source code to execution.

In the following sections, we explain in detail the implementation selection
algorithm and the probabilities updating module that have been included in the
original OmpSs framework to support the new PRISE scheduler.

4.1 Implementation selector algorithm

The PRISE scheduler has been developed as a new module in the Nanos++
runtime. As stated in Section 3, the OmpSs pragmas allow specifying alter-
nate implementations for a same task which can be selected internally by the
supported scheduling modules. Specifically, this algorithm selects an alternate
implementation based on the probabilities calculated for each of them. It is im-
portant to note that the weights of these probabilities depend on the version
execution time and problem size. Particularly, the algorithm divides the range
of problem sizes into intervals of the same length, where each might have dif-
ferent probabilities. With that, it uses the probabilities assigned to the interval
where the input problem size belongs to.

Listing 1.1: Example of OmpSs application using different implementations.

#pragma omp target device (smp) psize (2) // The second parameter contains the problem size
#pragma omp task
void func(int **m, int problemSize);

#pragma omp target device (smp) implements(func)
#pragma omp task
void func_v2(int **m, int problemSize);

#pragma omp target device (smp) implements(func)
#pragma omp task
void func_v3(int **m, int problemSize);

int main() {
for(int i=0; i<10; i++) {
func(matrix, problemSize);

#pragma omp taskwait

return 0O;

}




Concretely, the algorithm takes the following steps. First, it retrieves the
input problem size and obtains the probabilities of the corresponding size inter-
val. To obtain the problem size, we have modified the Mercurium compiler in
order to implement the new psize clause, which extends the supported clauses
of the OmpSs target directive. This clause is basically leveraged to indicate
which parameter in the function call should be used as for the problem size.
Listing 1.1 shows an example of an OmpSs application where three different im-
plementations of the function func are annotated as tasks using the implements
and psize clauses on the target directive. In this code, psize(2) indicates the
scheduler that the second parameter contains the problem size.

Next, the algorithm chooses a candidate implementation using a roulette-
wheel selection approach. This approach basically divides a line segment of length
Eij\io P; in subsegments whose size correspond to the probability P; calculated
for the i-th implementation. Finally, it selects an implementation depending on
the location in the segment of a previously generated pseudo-random number
between 0 and 1.

4.2 Probabilities updating module

In this section, we describe the probabilities updating module, which is in charge
of recalculating, after the application run, the degree of certainty that each
version provides the best performance. The computation of these probabilities is
mainly based on the average execution time of the different versions. Therefore,
the version having the lowest execution time will lead to a higher probability and
be finally preferred by the scheduler. In order to support further explanations,
Eq. 1 defines that a version A provides the best performance when its expected
execution time E(A) is lower than any other available version in the set S.

Best(A,S) =Vie S:E(A) <E(%). (1)

The methodology to calculate the probabilities is as follows. First of all, the
confidence intervals of the available implementations are computed using the
averages and standard deviations of their execution time. Next, these confidence
intervals are compared among them in order to determine their probabilities.
For instance, if two intervals are disjointed, the option providing the best per-
formance has a probability of 100% of being selected. On the contrary, the
probability is split between both versions. If this occurs, these versions are ac-
cordingly executed until their confidence intervals become narrow enough to
avoid the overlapping. This methodology makes two general assumptions when
calculating the expected execution time of a version: 7) it is always within the
confidence interval, and 1) it is distributed equally along the confidence interval,
i.e., following a uniform distribution. For these reasons, the results obtained are
not exact but accurate enough for our purposes.

Fig. 2 shows an example of three versions (X, Y and Z) with their corre-
sponding confidence intervals along the time axis. As observed, the three con-
fidence intervals overlap among them in some degree. In a first step, the time
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Fig. 2: Example of overlapping confidence intervals for different versions.

axis is divided into intervals that begin each time a confidence interval starts or
ends. Note that in the example we obtained 4 time intervals. With this, we select
those time intervals finishing at the same time or before any confidence interval,
i.e., time intervals 0 and 1. This way, we can ensure that the expected execution
time of the best version is within those intervals. Next, we apply the law of total
probability in order to compute the versions probabilities by accumulating their
marginal probabilities on the selected time intervals. As can be seen, the version
Z does not contain any selected interval, hence, its probability is zero.

To calculate the marginal probabilities of each time interval and version,
we apply again the law of total probability for other versions involved in the
same time interval. We decompose the marginal probability into three different
addends: when the expected execution time of the compared versions is lower,
within or greater than the considered time interval. To illustrate the aforemen-
tioned explanation, Eq. 2, 3, 4 calculate respectively the probability of the ver-
sions X, Y and Z, shown in Fig. 2, to be better than the rest. In these formulas,
I; denotes the i-th time interval, C'I; the confidence interval of the version j,
and B; and E; represent the begin and the end of a given interval ¢. Applying
these equations, we get that the highest probability is assigned to version X.

P(Best(X,{X,Y, Z})) = P(Best(X,0) | E(X) € Io)P(E(X) € Io)+
P (Best(X,{Y}) | E(X) € I1,E(Y) € )P (E(X) € ,)P(E(Y) € I1)+
P(Best(X,{Y}) | E(X) € I1,E(Y) > I)P(E(X) € )P(E(Y) > I,) =

E1,—Bi, 1 En-Bp Er,—Br, Er,—Br, Ecry=Er,  (2)
Eciy—Bciy 2 Eciy—Bciy Ecry—Bcry Eciy—Bciy Eciy,—Bcry
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P(Best(Z,{X,Y, 2})) = P(Best(v,0) | E(2) € 0) = 0. (4)

5 Evaluation

In this section, we evaluate the behavior of the PRISE scheduler using the general
matrix-matrix multiplication (GEMM) as for the use case. First, we perform an



evaluation of the accuracy and convergence of the selector algorithm using the
GEMM case. Finally, we compare the performance of the PRISE and the OmpSs
versioning schedulers.

As for the heterogeneous platform, we employ a machine consisting of two
multi-core Intel Xeon E5-2695 processor (XEON) with a total of 24 physical
cores running at 2.40 GHz and equipped with 128 GB of RAM. This platform
is also equipped with two AMD Radeon GPUs, R9 290X (AMD1) and R9 285
series (AMD2), and an Intel Xeon Phi 3120 co-processor (MIc). On the other
hand, the PRISE scheduler has been developed into the Mercurium compiler v2.0
and the Nanos++ runtime v0.12a, part of the OmpSs programming framework.
Additionally, the source codes generated by Mercurium have been compiled with
GCC 5.1 using the -03 flag.

5.1 Analysis with the Gemm use case

In this section, we analyze the dgemm kernel performance and the selector accu-
racy using the implementations from the cIBLAS [1] and MKL libraries on the
target machine. While the cIBLAS dgemm implementation runs on all the plat-
form processors, the MKL implementation only runs on the XEON processor.

Fig. 3 shows the accuracy progress of PRISE and the dgemm kernel perfor-
mance rates for increasing number of training iterations. Note that the perfor-
mance rates were obtained dividing the execution time of the fastest and the se-
lected implementation. For each of these iterations, we train the system running
an instance of the dgemm kernel using square matrices of random sizes, ranging
between 64 x64 and 4,096 x4,096. Afterwards, we evaluate the knowledge gained
by the selector performing 100 runs of the same kernel.

As can be seen in Fig. 3a, these percentages increase in a smooth curve until
reaching, after 170 training iterations, roughly 99.8 % of the total accuracy. This
behavior is mainly because the confidence intervals in that iteration are narrow
enough, so that, on average, the selections made are already adequate. Focusing
on the progress of performance rate, shown in Fig 3b, we notice that it grows
in a similar fashion than the accuracy progress. Nevertheless, each time that
PRISE does not make an accurate selection, the impact in the run time is more
notorious than that represented by the accuracy rate.
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(a) Accuracy over training iterations.  (b) Performance over training iterations.

Fig. 3: Progress of the selector accuracy and performance over training iterations
using the dgemm kernel.



5.2 Comparison with an alternative scheduler

In this section, we compare the performance benefits of both PRISE and wver-
sioning OmpSs schedulers. To assess them, we developed a synthetic benchmark
consisting of two consecutive 30-iteration loops that run, in each iteration, the
dgemm kernel using square matrices of size 1,024 and random sizes, respectively.

Fig. 4 depicts the execution progress of this application. As can be seen,
PRISE starts from the first iteration of each loop selecting the implementations
that perform best. This is because our scheduler uses an external file of historical
data, which was collected during previous executions. (It is important to note
that PRISE was previously trained performing 300 executions of the dgemm ker-
nel with random matrix sizes.) On the contrary, we detect that the versioning
scheduler does not keep any performance data among executions, so it needs
a few trial runs of the different implementations until it finds the fastest one.
Afterwards, the versioning scheduler keeps selecting the same implementation,
regardless of the problem size, even if it is not the optimal. Therefore, when
the matrix size varies among iterations, this scheduler is not able to self-adapt.
In contrast, PRISE relies on the problem size to select the most suitable ver-
sion, and thus, improves the overall performance. All in all, the presented PRISE
scheduler is more adaptive and gains knowledge within application runs, while
the wversioning counterpart does not keep historical data and, therefore, needs
to adapt in each execution.
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Fig. 4: Execution progress of two 30-iteration loops computing the dgemm kernel
and using both PRISE and wversioning schedulers.

6 Conclusions

In this paper, we have presented PRISE, a novel implementation selector that
uses a probabilistic and profile-guided approach to choose the most appropriate
implementation of a same kernel. To develop this selector we have leveraged the
two main components of the OmpSs programming framework: the Mercurium
compiler, to interpret a new pragma clause, and the Nanos++ runtime, to in-
troduce a new scheduling module that implements this approach. To assess the
proposed scheduler, we have evaluated its accuracy and performance using dif-
ferent versions of the general matrix-matrix multiplication.

Through the experimental results, we demonstrated that PRISE is able to
select the fastest implementation of the dgemm kernel for varying square matrix



sizes. We observed that the selector probabilities converges in roughly 170 train-
ing iterations and leads to sufficient accuracy and performance figures. Finally,
we proved that our PRISE scheduler outperforms, in some cases, the performance
delivered by the OmpSs versioning scheduler.

As future work, we plan to extend this approach for supporting high-level
parallel patterns, such as the Pipeline and Farm constructions. Also, we intend
to introduce a mechanism to update the probabilities during application run.
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