Skip to main content

Energy Management in Residential Area using Genetic and Strawberry Algorithm

  • Conference paper
  • First Online:
Advances in Network-Based Information Systems (NBiS 2017)

Abstract

In our work, we consider the problem of load management in residential area. We adopt Genetic Algorithm (GA) and Strawberry Algorithm (SBA) for load scheduling. These algorithms are used to manage residential load between shoulder, on-peak and off-peak hours. Time of Use (ToU) pricing scheme has been used for bill calculation. Simulation results show that GA based energy optimization controller perform good than SBA based energy optimization controller in term of Peak to Average Ratio (PAR), electricity bill reduction and waiting time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gelazanskas, L., Gamage, K.A.A.: Demand side management in smart grid: a review and proposals for future direction. Sustain. Cities Soc. 11, 22–30 (2014)

    Article  Google Scholar 

  2. Siano, P.: Demand response and smart grids a survey. Renew. Sustain. Energy Rev. 30, 461–478 (2014)

    Article  Google Scholar 

  3. Tsui, K.M., Chan, S.-C.: Demand response optimization for smart home scheduling under real-time pricing. IEEE Trans. Smart Grid 3(4), 1812–1821 (2012)

    Article  Google Scholar 

  4. Zhu, Z., Tang, J., Lambotharan, S., Chin, W.H., Fan, Z.: An integer linear programming based optimization for home demand-side management in smart grid. In: 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), pp. 1–5. IEEE (2012)

    Google Scholar 

  5. Kriett, P.O., Salani, M.: Optimal control of a residential microgrid. Energy 42(1), 321–330 (2012)

    Article  Google Scholar 

  6. Zhao, Z., Lee, W.C., Shin, Y., Song, K.-B.: An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 4(3), 1391–1400 (2013)

    Article  Google Scholar 

  7. Khan, M.A., Javaid, N., Mahmood, A., Khan, Z.A., Alrajeh, N.: A generic demand side management model for smart grid. Int. J. Energy Res. 39(7), 954–964 (2015)

    Article  Google Scholar 

  8. Zhou, Y., Chen, Y., Xu, G., Zhang, Q., Krundel, L.: Home energy management with PSO in smart grid. In: 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), pp. 1666–1670. IEEE (2014)

    Google Scholar 

  9. AlSkaif, T., Luna, A.C., Zapata, M.G., Guerrero, J.M., Bellalta, B.: Reputation-based joint scheduling of households appliances and storage in a microgrid with a shared battery. Energy Build. 138, 228–239 (2017)

    Article  Google Scholar 

  10. Samadi, P., Wong, V.W.S., Schober, R.: Load scheduling and power trading in systems with high penetration of renewable energy resources. IEEE Trans. Smart Grid 7(4), 1802–1812 (2016)

    Article  Google Scholar 

  11. Rahim, S., Javaid, N., Ahmad, A., Khan, S.A., Khan, Z.A., Alrajeh, N., Qasim, U.: Exploiting heuristic algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy Build. 129, 452–470 (2016)

    Article  Google Scholar 

  12. Javaid, N., Javaid, S., Abdul, W., Ahmed, I., Almogren, A., Alamri, A., Niaz, I.A.: A hybrid genetic wind driven heuristic optimization algorithm for demand side management in smart grid. Energies 10(3), 319 (2017)

    Article  Google Scholar 

  13. Mahmood, D., Javaid, N., Alrajeh, N., Khan, Z.A., Qasim, U., Ahmed, I., Ilahi, M.: Realistic scheduling mechanism for smart homes. Energies 9(3), 202 (2016)

    Article  Google Scholar 

  14. Jalali, M.M., Kazemi, A.: Demand side management in a smart grid with multiple electricity suppliers. Energy 81, 766–776 (2015)

    Article  Google Scholar 

  15. Ma, K., Yao, T., Yang, J., Guan, X.: Residential power scheduling for demand response in smart grid. Int. J. Electr. Power Energy Syst. 78, 320–325 (2016)

    Article  Google Scholar 

  16. Hu, R.L., Skorupski, R., Entriken, R., Ye, Y.: A mathematical programming formulation for optimal load shifting of electricity demand for the smart Grid. IEEE Trans. Big Data (2016)

    Google Scholar 

  17. Ahmed, M.S., Mohamed, A., Khatib, T., Shareef, H., Homod, R.Z., Ali, J.A.: Real time optimal schedule controller for home energy management system using new binary backtracking search algorithm. Energy Build. 138, 215–227 (2017)

    Article  Google Scholar 

  18. Shakeri, M., Shayestegan, M., Abunima, H., Reza, S.M.S., Akhtaruzzaman, M., Alamoud, A.R.M., Sopian, K., Amin, N.: An intelligent system architecture in home energy management systems (HEMS) for efficient demand response in smart grid. Energy Build. 138, 154–164 (2017)

    Article  Google Scholar 

  19. Merrikh-Bayat, F.: A numerical optimization algorithm inspired by the strawberry plant. arXiv preprint arXiv:1407.7399 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadeem Javaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Asif, S., Ambreen, K., Iftikhar, H., Khan, H.N., Maroof, R., Javaid, N. (2018). Energy Management in Residential Area using Genetic and Strawberry Algorithm. In: Barolli, L., Enokido, T., Takizawa, M. (eds) Advances in Network-Based Information Systems. NBiS 2017. Lecture Notes on Data Engineering and Communications Technologies, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-65521-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65521-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65520-8

  • Online ISBN: 978-3-319-65521-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics