Skip to main content

Enhancing Ant Brood Clustering with Adaptive Radius of Perception and Non-parametric Estimation on Multi-core Architectures

  • Conference paper
  • First Online:
Advances in Intelligent Networking and Collaborative Systems (INCoS 2017)

Abstract

Clustering is an important problem in complex networks. Exact algorithmic approaches to clustering is not affordable for many real world instances, requiring innovative, approximation algorithms. Among them are meta-heuristics such as nature-inspired techniques. One of the existing techniques inspired by real ants in nature, is called ant brood clustering algorithm (ACA). In this paper, we present Ant Clustering Algorithm with Adaptive Radius (ACA-AR). Unlike existing ACA Models, ACA-AR utilizes Kernel Density Estimation (KDE) to measure average dissimilarity of data objects in ant’s neighborhood, and it allows ants to adapt the radius of perception so they can avoid the convergence to a local-optimum. We also present a parallel counterpart of the algorithm on the Graphics Processing Unit (GPU) using NVIDIA CUDA and on multi-core CPU cores using OpenMP. Our results on benchmark datasets show that ACA-AR gains substantial clustering accuracy, and the parallel version executes up to 39x faster whilst preserving the quality of the retrieved clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Navlakha, S., Bar-Joseph, Z.: Distributed information processing in biological and computational systems. Commun. ACM 58(1), 94–102 (2015)

    Article  Google Scholar 

  2. Honghao, C., Zuren, F., Zhigang, R.: Community detection using ant colony optimization. In: CEC, pp. 3072–3078. IEEE (2013)

    Google Scholar 

  3. Lumer, E.D., Faieta, B.: Diversity and adaptation in populations of clustering ants. In: Proceedings of the Third International Conference on Simulation of Adaptive Behavior: From Animals to Animats 3: From Animals to Animats 3, pp. 501–508. MIT Press (1994)

    Google Scholar 

  4. Wang, J., Osagie, E., Thulasiraman, P., Thulasiram, R.: HOPNET: a hybrid ant colony optimization routing algorithm for mobile ad hoc network. Ad Hoc Netw. 7(4), 690–705 (2009)

    Article  Google Scholar 

  5. Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien, L.: The dynamics of collective sorting robot-like ants and ant-like robots. In: Proceedings of the First International Conference on Simulation of Adaptive Behavior on From Animals to Animats, pp. 356–363 (1991)

    Google Scholar 

  6. Handl, J., Meyer, B.: Improved ant-based clustering and sorting in a document retrieval interface. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 913–923. Springer, Heidelberg (2002). doi:10.1007/3-540-45712-7_88

    Google Scholar 

  7. Wu, B., Shi, Z.Z.: An ant colony algorithm based partition algorithm for TSP. Chin. J. Comput.-Chin. Edit. 24(12), 1328–1333 (2001)

    MathSciNet  Google Scholar 

  8. http://archive.ics.uci.edu/ml/

  9. Hirschberg, J.B., Rosenberg, A.: V-measure: a conditional entropy-based external cluster evaluation. In: Proceedings of EMNLP (2007)

    Google Scholar 

  10. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  MATH  Google Scholar 

  11. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  12. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 21(1), 32–40 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Senoussaoui, M., Kenny, P., Dumouchel, P., Stafylakis, T.: Efficient iterative mean shift based cosine dissimilarity for multi-recording speaker clustering. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7712–7715. IEEE (2013)

    Google Scholar 

  14. Michailidis, P.D., Margaritis, K.G.: Accelerating Kernel density estimation on the GPU using the CUDA framework. Appl. Math. Sci. 7(30), 1447–1476 (2013)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parimala Thulasiraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Qasem, M., Liu, Y.Y., Wang, Z., Thulasiraman, P., Thulasiram, R.K. (2018). Enhancing Ant Brood Clustering with Adaptive Radius of Perception and Non-parametric Estimation on Multi-core Architectures. In: Barolli, L., Woungang, I., Hussain, O. (eds) Advances in Intelligent Networking and Collaborative Systems. INCoS 2017. Lecture Notes on Data Engineering and Communications Technologies, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-65636-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65636-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65635-9

  • Online ISBN: 978-3-319-65636-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics