Abstract
Clustering is an important problem in complex networks. Exact algorithmic approaches to clustering is not affordable for many real world instances, requiring innovative, approximation algorithms. Among them are meta-heuristics such as nature-inspired techniques. One of the existing techniques inspired by real ants in nature, is called ant brood clustering algorithm (ACA). In this paper, we present Ant Clustering Algorithm with Adaptive Radius (ACA-AR). Unlike existing ACA Models, ACA-AR utilizes Kernel Density Estimation (KDE) to measure average dissimilarity of data objects in ant’s neighborhood, and it allows ants to adapt the radius of perception so they can avoid the convergence to a local-optimum. We also present a parallel counterpart of the algorithm on the Graphics Processing Unit (GPU) using NVIDIA CUDA and on multi-core CPU cores using OpenMP. Our results on benchmark datasets show that ACA-AR gains substantial clustering accuracy, and the parallel version executes up to 39x faster whilst preserving the quality of the retrieved clusters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Navlakha, S., Bar-Joseph, Z.: Distributed information processing in biological and computational systems. Commun. ACM 58(1), 94–102 (2015)
Honghao, C., Zuren, F., Zhigang, R.: Community detection using ant colony optimization. In: CEC, pp. 3072–3078. IEEE (2013)
Lumer, E.D., Faieta, B.: Diversity and adaptation in populations of clustering ants. In: Proceedings of the Third International Conference on Simulation of Adaptive Behavior: From Animals to Animats 3: From Animals to Animats 3, pp. 501–508. MIT Press (1994)
Wang, J., Osagie, E., Thulasiraman, P., Thulasiram, R.: HOPNET: a hybrid ant colony optimization routing algorithm for mobile ad hoc network. Ad Hoc Netw. 7(4), 690–705 (2009)
Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien, L.: The dynamics of collective sorting robot-like ants and ant-like robots. In: Proceedings of the First International Conference on Simulation of Adaptive Behavior on From Animals to Animats, pp. 356–363 (1991)
Handl, J., Meyer, B.: Improved ant-based clustering and sorting in a document retrieval interface. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 913–923. Springer, Heidelberg (2002). doi:10.1007/3-540-45712-7_88
Wu, B., Shi, Z.Z.: An ant colony algorithm based partition algorithm for TSP. Chin. J. Comput.-Chin. Edit. 24(12), 1328–1333 (2001)
Hirschberg, J.B., Rosenberg, A.: V-measure: a conditional entropy-based external cluster evaluation. In: Proceedings of EMNLP (2007)
Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)
Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 21(1), 32–40 (1975)
Senoussaoui, M., Kenny, P., Dumouchel, P., Stafylakis, T.: Efficient iterative mean shift based cosine dissimilarity for multi-recording speaker clustering. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7712–7715. IEEE (2013)
Michailidis, P.D., Margaritis, K.G.: Accelerating Kernel density estimation on the GPU using the CUDA framework. Appl. Math. Sci. 7(30), 1447–1476 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Qasem, M., Liu, Y.Y., Wang, Z., Thulasiraman, P., Thulasiram, R.K. (2018). Enhancing Ant Brood Clustering with Adaptive Radius of Perception and Non-parametric Estimation on Multi-core Architectures. In: Barolli, L., Woungang, I., Hussain, O. (eds) Advances in Intelligent Networking and Collaborative Systems. INCoS 2017. Lecture Notes on Data Engineering and Communications Technologies, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-65636-6_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-65636-6_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-65635-9
Online ISBN: 978-3-319-65636-6
eBook Packages: EngineeringEngineering (R0)