Abstract
Energy optimization is important aspect of smart gird (SG). SG integrates communication and information technology in traditional grid. In SG there is two-way communication between consumer and utility. It includes smart meter, Energy Management Controller (EMC) and smart appliances. Users can shift load from on peak hours to off peak hours by adapting Demand Side Management (DSM) strategies, which effectively reduce electricity cost. The objectives of this paper are the minimization of power consumption, electricity cost, reduction of Peak to Average Ratio (PAR) using Enhanced Differential Evolution (EDE) and Chicken Swarm Optimization (CSO) algorithms. For the calculation of cost Critical Peak Pricing (CPP) is used. The simulations result show that proposed schemes reduce electricity cost, reduce power consumption and PAR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rahim, S., Javaid, N., Ahmad, A., Khan, S.A., Khan, Z.A., Alrajeh, N., Qasim, U.: Exploiting heuristic algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy Build. 129, 452–470 (2016)
Zhu, Z., Tang, J., Lambotharan, S., Chin, W.H., Fan, Z.: An integer linear programming based optimization for home demand-side management in smart grid. In: 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), p. 15. IEEE (2012)
Zhao, Z., Lee, W.C., Shin, Y., Song, K.-B.: An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 4(3), 1391–1400 (2013)
Javaid, N., Javaid, S., Abdul, W., Ahmed, I., Almogren, A., Alamri, A., Niaz, I.A.: A hybrid genetic wind driven heuristic optimization algorithm for demand side management in smart grid. Energies 10(3), 319 (2017)
Ma, K., Yao, T., Yang, J., Guan, X.: Residential power scheduling for demand response in smart grid. Int. J. Electric. Power Energy Syst. 78, 320–325 (2016)
Samadi, P., Wong, V.W.S., Schober, R.: Load scheduling and power trading in systems with high penetration of renewable energy resources. IEEE Trans. Smart Grid 7(4), 1802–1812 (2016)
Ogunjuyigbe, A.S.O., Ayodele, T.R., Akinola, O.A.: User satisfaction induced demand side load management in residential buildings with user budget constraint. Appl. Energy 187, 352–366 (2017)
Maytham, S., Ahmeda, B., Mohameda, A., Khatibc, T., Shareefd, H., Homode, R.Z., Ali, J.A.: Real time optimal schedule controller for home energy management system using new binary backtracking search algorithm. Energy Build. 138, 215–227 (2017)
Rastegar, M., Fotuhi-Firuzabad, M., Zareipou, H.: Home energy management incorporating operational priority of appliance. Electric. Power Energy Syst. 74, 286–292 (2016)
Setlhaolo, D., Xia, X.: Combined residential demand side management strategies with coordination and economic analysis. Electric. Power Energy Syst. 79, 150–160 (2016)
Ozkan, H.A.: Appliance based control for home power management systems. Energy 114, 693–707 (2016)
Albalas, F., Khamayseh, Y., Mardini, W.: Improved appliance coordination scheme with waiting time in smart grids. Int. J. Adv. Comput. Sci. Appl., April 2016
Arafa, M., Sallam, E.A., Fahmy, M.M.: An Enhanced Differential Evolution Optimization Algorithm. IEEE (2014) ISBN 978-1-4799-3724-0/14/2014
Meng, X., Liu, Y., Gao, X., Zhang, H.: A new bioinspired algorithm: chicken swarm optimization. In: Advances in Swarm Intelligence, ICSI 2014, pp. 86–94 (2014)
Collotta, M., Pau, G.: An innovative approach for forecasting of energy requirements to improve a smart home management system based on BLE. IEEE Trans. Green Commun. Networking, March 2017
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Awais, M., Abadeen, Z.U., Bilal, T., Faiz, Z., Junaid, M., Javaid, N. (2018). Home Energy Management Using Enhanced Differential Evolution and Chicken Swarm Optimization Techniques. In: Barolli, L., Woungang, I., Hussain, O. (eds) Advances in Intelligent Networking and Collaborative Systems. INCoS 2017. Lecture Notes on Data Engineering and Communications Technologies, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-65636-6_42
Download citation
DOI: https://doi.org/10.1007/978-3-319-65636-6_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-65635-9
Online ISBN: 978-3-319-65636-6
eBook Packages: EngineeringEngineering (R0)