Abstract
Delays in feedback control loop, as induced by networked distributed control schemes, may have detrimental effects on control performance. This induces an interest in safety verification of delay differential equations (DDEs) used as a model of embedded control. This article explores reachable-set computation for a class of DDEs featuring a local homeomorphism property. This topological property facilitates construction of over- and under-approximations of their full reachable sets by performing reachability analysis on the boundaries of their initial sets, thereby permitting an efficient lifting of reach-set computation methods for ODEs to DDEs. Membership in this class of DDEs is determined by conducting sensitivity analysis of the solution mapping with respect to the initial states to impose a bound constraint on the time-lag term. We then generalize boundary-based reachability analysis to such DDEs. Our reachability algorithm is iterative along the time axis and the computations in each iteration are performed in two steps. The first step computes an enclosure of the set of states reachable from the boundary of the step’s initial state set. The second step derives an over- and under-approximations of the full reachable set by including (excluding, resp.) the obtained boundary enclosure from certain convex combinations of points in that boundary enclosure. Experiments on two illustrative examples demonstrate the efficacy of our algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
If the under-approximation intersects a given unsafe set, there is definitely at least one of the trajectories entering the unsafe set, i.e., the system is definitely unsafe.
- 2.
The delay-free system could be found in the Package CORA.
References
Althoff, M.: Reachability analysis of nonlinear systems using conservative polynomialization and non-convex sets. In: Belta, C., Ivancic, F. (eds.) Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control (HSCC 2013), Philadelphia, 8–11 April 2013, pp. 173–182. ACM (2013)
Althoff, M.: CORA 2016 Manual (2016). http://www6.in.tum.de/Main/SoftwareCORA
Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization. In: Proceedings of the 47th IEEE Conference on Decision and Control (CDC 2008), Cancún, 9–11 December 2008, pp. 4042–4048. IEEE (2008)
Bellman, R., Cooke, K.L.: Differential-difference equations. Technical report R-374-PR, The RAND Corporation, Santa Monica, California, January 1963
Bellman, R., et al.: The stability of solutions of linear differential equations. Duke Math. J. 10(4), 643–647 (1943)
Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliab. Comput. 4(4), 361–369 (1998)
Chen, M., Fränzle, M., Li, Y., Mosaad, P.N., Zhan, N.: Validated simulation-based verification of delayed differential dynamics. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 137–154. Springer, Cham (2016). doi:10.1007/978-3-319-48989-6_9
Chen, X., Sankaranarayanan, S., Ábrahám, E.: Under-approximate flowpipes for non-linear continuous systems. In: Formal Methods in Computer-Aided Design (FMCAD 2014), Lausanne, 21–24 October 2014, pp. 59–66. IEEE (2014)
Chutinan, A., Krogh, B.H.: Computing polyhedral approximations to flow pipes for dynamic systems. In: Proceedings of the 37th IEEE Conference on Decision and Control, vol. 2, pp. 2089–2094. IEEE (1998)
Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 174–189. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71493-4_16
Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31954-2_19
Goubault, E., Mullier, O., Putot, S., Kieffer, M.: Inner approximated reachability analysis. In: Fränzle, M., Lygeros, J. (eds.) 17th International Conference on Hybrid Systems: Computation and Control (part of CPS Week) (HSCC 2014), Berlin, 15–17 April 2014, pp. 163–172. ACM (2014)
Huang, Z., Fan, C., Mitra, S.: Bounded invariant verification for time-delayed nonlinear networked dynamical systems. Nonlinear Anal. Hybrid Syst. 23, 211–229 (2017)
Kaynama, S., Maidens, J.N., Oishi, M., Mitchell, I.M., Dumont, G.A.: Computing the viability kernel using maximal reachable sets. In: Dang, T., Mitchell, I.M. (eds.) Hybrid Systems: Computation and Control (part of CPS Week 2012) (HSCC 2012), Beijing, 17–19 April 2012, pp. 55–64. ACM (2012)
Korda, M., Henrion, D., Jones, C.N.: Inner approximations of the region of attraction for polynomial dynamical systems. IFAC Proc. Vol. 46(23), 534–539 (2013)
Kuang, Y.: Delay Differential Equations: With Applications in Population Dynamics, vol. 191. Academic Press, Boston (1993)
Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 202–214. Springer, Heidelberg (2000). doi:10.1007/3-540-46430-1_19
Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for hybrid dynamics: the reachability problem. In: Dayawansa, W.P., Lindquist, A., Zhou, Y. (eds.) New Directions and Applications in Control Theory, vol. 321, pp. 193–205. Springer, Heidelberg (2005). doi:10.1007/10984413_12
Le Guernic, C., Girard, A.: Reachability analysis of linear systems using support functions. Nonlinear Anal. Hybrid Syst. 4(2), 250–262 (2010)
Moore, R.E.: Automatic local coordinate transformations to reduce the growth of error bounds in interval computation of solutions of ordinary differential equations. Error Digit. Comput. 2, 103–140 (1965)
Neher, M., Jackson, K.R., Nedialkov, N.S.: On Taylor model based integration of ODEs. SIAM J. Numer. Anal. 45(1), 236–262 (2007)
Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24743-2_32
Prajna, S., Jadbabaie, A.: Methods for safety verification of time-delay systems. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 4348–4353. IEEE (2005)
Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation based abstraction refinement. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 573–589. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31954-2_37
Stauning, O., Madsen, K.: Automatic validation of numerical solutions. Ph.D. thesis, Technical University of DenmarkDanmarks Tekniske Universitet, Department of Informatics and Mathematical ModelingInstitut for Informatik og Matematisk Modellering (1997)
Taylor, S.R.: Probabilistic properties of delay differential equations (2004)
Varah, J.M.: A lower bound for the smallest singular value of a matrix. Linear Algebra Appl. 11(1), 3–5 (1975)
Wang, T., Lall, S., West, M.: Polynomial level-set method for polynomial system reachable set estimation. IEEE Trans. Autom. Control 58(10), 2508–2521 (2013)
Xue, B., Easwaran, A., Cho, N.-J., Franzle, M.: Reach-avoid verification for nonlinear systems based on boundary analysis. IEEE Trans. Autom. Control 62(7), 3518–3523 (2017)
Xue, B., She, Z., Easwaran, A.: Under-approximating backward reachable sets by polytopes. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 457–476. Springer, Cham (2016). doi:10.1007/978-3-319-41528-4_25
Zou, L., Fränzle, M., Zhan, N., Mosaad, P.N.: Automatic verification of stability and safety for delay differential equations. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 338–355. Springer, Cham (2015). doi:10.1007/978-3-319-21668-3_20
Acknowledgement
This research from Peter N. Mosaad and Martin Fränzle is funded by Deutsche Forschungsgemeinschaft within the Research Training Group “SCARE - System Correctness under Adverse Conditions” (DFG GRK 1765) and from Mingshuai Chen, Yangjia Li, and Naijun Zhan is supported partly by NSFC under grant No. 61625206, by “973 Program” under grant No. 2014CB340701 and by the CAS/SAFEA International Partnership Program for Creative Research Teams. Besides, Yangjia Li is supported partly by NSFC under grant No. 61502467.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
The Proof of Lemma 1
Proof
From Eq. (6), we obtain that
where \(\varvec{J}^{ij}=\Big (D_{\varvec{g}}(\varvec{\phi }(t;\varvec{x}_0))s_{\varvec{x}_0}(t)\Big )_{t=\tau _{ij}}^{ij}\), \(\tau _{ij}\) lies between 0 and t, \(\varvec{s}_{\varvec{x}_0}^{ij}\) is the \((i,j)_{th}\) element of the matrix \(\varvec{s}_{\varvec{x}_0}\) and \(\varvec{J}^{ij}\) is the \((i,j)_{th}\) element of the matrix \(D_{\varvec{g}}(\varvec{\phi }(t;\varvec{x}_0))s_{\varvec{x}_0}(t)\) with \(t=\tau _{ij}\). Also, since \(\varvec{g}(\varvec{x})\in \mathcal {C}^1(\mathcal {X})\), i.e. \(\varvec{g}(\cdot ): \mathcal {X}\mapsto \mathbb {R}^n\) is a continuously differentiable function, the element in the matrix \(D_{\varvec{g}}=\frac{\partial \varvec{g}}{\partial \varvec{x}}\) is bounded over an arbitrary compact set covering the reachable set \(\cup _{t\in [0,\tau _1]}\varOmega (t;\mathcal {I}_0)\) in the set \(\mathcal {X}\), where \(\tau _1\) can be any number in \((0,\tau ]\) such that \(\cup _{t\in [0,\tau _1]}\varOmega (t;\mathcal {I}_0)\subseteq \mathcal {X}\). The bounded property also applies to the matrix \(s_{\varvec{x}_0}(t)\). Consequently, a lower bound for all elements of the matrix \(\varvec{J}\) exists. Thus, \(lim_{t\rightarrow 0}s_{\varvec{x}_0}(t)=\varvec{I}\) implies that there exists a \(\tau ^{*}\in (0,\tau _1]\) s.t. the sensitivity matrix \(s_{\varvec{x}_0}(t)\) for \(t\in [0,\tau ^{*}]\) is diagonally dominant. The conclusion follows from this fact. \(\square \)
The Proof of Lemma 2
Proof
Since the determinant of the Jacobian matrix of the mapping \(\varvec{x}(t)=\varvec{\psi }_{k-1}(t;\varvec{x}((k-1)\tau ,(k-1)\tau )\) w.r.t. any state \(\varvec{x}((k-1)\tau ) \in \varOmega ((k-1)\tau ;\mathcal {I}_0)\) is not zero for \(t\in [(k-1)\tau ,k\tau ]\), then for any fixed \(t\in [(k-1)\tau ,k\tau ]\), the mapping
is a bijection and its inverse mapping from \(\varOmega (t;\mathcal {I}_0)\) to \(\varOmega ((k-1)\tau ;\mathcal {I}_0)\) is continuously differentiable. Thus, the sensitivity matrix \(s_{\varvec{x}(k\tau )}(t)\) for \(t\in [k\tau ,(k+1)\tau ]\) satisfies the sensitivity equation:
with \(s_{\varvec{x}(k\tau )}(k\tau )=\varvec{I}\in \mathbb {R}^{n\times n}\). \(\square \)
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Xue, B., Mosaad, P.N., Fränzle, M., Chen, M., Li, Y., Zhan, N. (2017). Safe Over- and Under-Approximation of Reachable Sets for Delay Differential Equations. In: Abate, A., Geeraerts, G. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2017. Lecture Notes in Computer Science(), vol 10419. Springer, Cham. https://doi.org/10.1007/978-3-319-65765-3_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-65765-3_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-65764-6
Online ISBN: 978-3-319-65765-3
eBook Packages: Computer ScienceComputer Science (R0)