Skip to main content

Safe Over- and Under-Approximation of Reachable Sets for Delay Differential Equations

  • Conference paper
  • First Online:
Formal Modeling and Analysis of Timed Systems (FORMATS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10419))

Abstract

Delays in feedback control loop, as induced by networked distributed control schemes, may have detrimental effects on control performance. This induces an interest in safety verification of delay differential equations (DDEs) used as a model of embedded control. This article explores reachable-set computation for a class of DDEs featuring a local homeomorphism property. This topological property facilitates construction of over- and under-approximations of their full reachable sets by performing reachability analysis on the boundaries of their initial sets, thereby permitting an efficient lifting of reach-set computation methods for ODEs to DDEs. Membership in this class of DDEs is determined by conducting sensitivity analysis of the solution mapping with respect to the initial states to impose a bound constraint on the time-lag term. We then generalize boundary-based reachability analysis to such DDEs. Our reachability algorithm is iterative along the time axis and the computations in each iteration are performed in two steps. The first step computes an enclosure of the set of states reachable from the boundary of the step’s initial state set. The second step derives an over- and under-approximations of the full reachable set by including (excluding, resp.) the obtained boundary enclosure from certain convex combinations of points in that boundary enclosure. Experiments on two illustrative examples demonstrate the efficacy of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    If the under-approximation intersects a given unsafe set, there is definitely at least one of the trajectories entering the unsafe set, i.e., the system is definitely unsafe.

  2. 2.

    The delay-free system could be found in the Package CORA.

References

  1. Althoff, M.: Reachability analysis of nonlinear systems using conservative polynomialization and non-convex sets. In: Belta, C., Ivancic, F. (eds.) Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control (HSCC 2013), Philadelphia, 8–11 April 2013, pp. 173–182. ACM (2013)

    Google Scholar 

  2. Althoff, M.: CORA 2016 Manual (2016). http://www6.in.tum.de/Main/SoftwareCORA

  3. Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization. In: Proceedings of the 47th IEEE Conference on Decision and Control (CDC 2008), Cancún, 9–11 December 2008, pp. 4042–4048. IEEE (2008)

    Google Scholar 

  4. Bellman, R., Cooke, K.L.: Differential-difference equations. Technical report R-374-PR, The RAND Corporation, Santa Monica, California, January 1963

    Google Scholar 

  5. Bellman, R., et al.: The stability of solutions of linear differential equations. Duke Math. J. 10(4), 643–647 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliab. Comput. 4(4), 361–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, M., Fränzle, M., Li, Y., Mosaad, P.N., Zhan, N.: Validated simulation-based verification of delayed differential dynamics. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 137–154. Springer, Cham (2016). doi:10.1007/978-3-319-48989-6_9

    Chapter  Google Scholar 

  8. Chen, X., Sankaranarayanan, S., Ábrahám, E.: Under-approximate flowpipes for non-linear continuous systems. In: Formal Methods in Computer-Aided Design (FMCAD 2014), Lausanne, 21–24 October 2014, pp. 59–66. IEEE (2014)

    Google Scholar 

  9. Chutinan, A., Krogh, B.H.: Computing polyhedral approximations to flow pipes for dynamic systems. In: Proceedings of the 37th IEEE Conference on Decision and Control, vol. 2, pp. 2089–2094. IEEE (1998)

    Google Scholar 

  10. Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 174–189. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71493-4_16

    Chapter  Google Scholar 

  11. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31954-2_19

    Chapter  Google Scholar 

  12. Goubault, E., Mullier, O., Putot, S., Kieffer, M.: Inner approximated reachability analysis. In: Fränzle, M., Lygeros, J. (eds.) 17th International Conference on Hybrid Systems: Computation and Control (part of CPS Week) (HSCC 2014), Berlin, 15–17 April 2014, pp. 163–172. ACM (2014)

    Google Scholar 

  13. Huang, Z., Fan, C., Mitra, S.: Bounded invariant verification for time-delayed nonlinear networked dynamical systems. Nonlinear Anal. Hybrid Syst. 23, 211–229 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaynama, S., Maidens, J.N., Oishi, M., Mitchell, I.M., Dumont, G.A.: Computing the viability kernel using maximal reachable sets. In: Dang, T., Mitchell, I.M. (eds.) Hybrid Systems: Computation and Control (part of CPS Week 2012) (HSCC 2012), Beijing, 17–19 April 2012, pp. 55–64. ACM (2012)

    Google Scholar 

  15. Korda, M., Henrion, D., Jones, C.N.: Inner approximations of the region of attraction for polynomial dynamical systems. IFAC Proc. Vol. 46(23), 534–539 (2013)

    Article  Google Scholar 

  16. Kuang, Y.: Delay Differential Equations: With Applications in Population Dynamics, vol. 191. Academic Press, Boston (1993)

    MATH  Google Scholar 

  17. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 202–214. Springer, Heidelberg (2000). doi:10.1007/3-540-46430-1_19

    Chapter  Google Scholar 

  18. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for hybrid dynamics: the reachability problem. In: Dayawansa, W.P., Lindquist, A., Zhou, Y. (eds.) New Directions and Applications in Control Theory, vol. 321, pp. 193–205. Springer, Heidelberg (2005). doi:10.1007/10984413_12

    Chapter  Google Scholar 

  19. Le Guernic, C., Girard, A.: Reachability analysis of linear systems using support functions. Nonlinear Anal. Hybrid Syst. 4(2), 250–262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moore, R.E.: Automatic local coordinate transformations to reduce the growth of error bounds in interval computation of solutions of ordinary differential equations. Error Digit. Comput. 2, 103–140 (1965)

    MathSciNet  MATH  Google Scholar 

  21. Neher, M., Jackson, K.R., Nedialkov, N.S.: On Taylor model based integration of ODEs. SIAM J. Numer. Anal. 45(1), 236–262 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24743-2_32

    Chapter  Google Scholar 

  23. Prajna, S., Jadbabaie, A.: Methods for safety verification of time-delay systems. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 4348–4353. IEEE (2005)

    Google Scholar 

  24. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation based abstraction refinement. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 573–589. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31954-2_37

    Chapter  Google Scholar 

  25. Stauning, O., Madsen, K.: Automatic validation of numerical solutions. Ph.D. thesis, Technical University of DenmarkDanmarks Tekniske Universitet, Department of Informatics and Mathematical ModelingInstitut for Informatik og Matematisk Modellering (1997)

    Google Scholar 

  26. Taylor, S.R.: Probabilistic properties of delay differential equations (2004)

    Google Scholar 

  27. Varah, J.M.: A lower bound for the smallest singular value of a matrix. Linear Algebra Appl. 11(1), 3–5 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, T., Lall, S., West, M.: Polynomial level-set method for polynomial system reachable set estimation. IEEE Trans. Autom. Control 58(10), 2508–2521 (2013)

    Article  MathSciNet  Google Scholar 

  29. Xue, B., Easwaran, A., Cho, N.-J., Franzle, M.: Reach-avoid verification for nonlinear systems based on boundary analysis. IEEE Trans. Autom. Control 62(7), 3518–3523 (2017)

    Google Scholar 

  30. Xue, B., She, Z., Easwaran, A.: Under-approximating backward reachable sets by polytopes. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 457–476. Springer, Cham (2016). doi:10.1007/978-3-319-41528-4_25

    Google Scholar 

  31. Zou, L., Fränzle, M., Zhan, N., Mosaad, P.N.: Automatic verification of stability and safety for delay differential equations. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 338–355. Springer, Cham (2015). doi:10.1007/978-3-319-21668-3_20

    Chapter  Google Scholar 

Download references

Acknowledgement

This research from Peter N. Mosaad and Martin Fränzle is funded by Deutsche Forschungsgemeinschaft within the Research Training Group “SCARE - System Correctness under Adverse Conditions” (DFG GRK 1765) and from Mingshuai Chen, Yangjia Li, and Naijun Zhan is supported partly by NSFC under grant No. 61625206, by “973 Program” under grant No. 2014CB340701 and by the CAS/SAFEA International Partnership Program for Creative Research Teams. Besides, Yangjia Li is supported partly by NSFC under grant No. 61502467.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bai Xue .

Editor information

Editors and Affiliations

Appendix

Appendix

The Proof of Lemma 1

Proof

From Eq. (6), we obtain that

$$s^{ij}_{\varvec{x}_0}(t)=\varvec{I}^{ij}+\varvec{J}^{ij}t,$$

where \(\varvec{J}^{ij}=\Big (D_{\varvec{g}}(\varvec{\phi }(t;\varvec{x}_0))s_{\varvec{x}_0}(t)\Big )_{t=\tau _{ij}}^{ij}\), \(\tau _{ij}\) lies between 0 and t, \(\varvec{s}_{\varvec{x}_0}^{ij}\) is the \((i,j)_{th}\) element of the matrix \(\varvec{s}_{\varvec{x}_0}\) and \(\varvec{J}^{ij}\) is the \((i,j)_{th}\) element of the matrix \(D_{\varvec{g}}(\varvec{\phi }(t;\varvec{x}_0))s_{\varvec{x}_0}(t)\) with \(t=\tau _{ij}\). Also, since \(\varvec{g}(\varvec{x})\in \mathcal {C}^1(\mathcal {X})\), i.e. \(\varvec{g}(\cdot ): \mathcal {X}\mapsto \mathbb {R}^n\) is a continuously differentiable function, the element in the matrix \(D_{\varvec{g}}=\frac{\partial \varvec{g}}{\partial \varvec{x}}\) is bounded over an arbitrary compact set covering the reachable set \(\cup _{t\in [0,\tau _1]}\varOmega (t;\mathcal {I}_0)\) in the set \(\mathcal {X}\), where \(\tau _1\) can be any number in \((0,\tau ]\) such that \(\cup _{t\in [0,\tau _1]}\varOmega (t;\mathcal {I}_0)\subseteq \mathcal {X}\). The bounded property also applies to the matrix \(s_{\varvec{x}_0}(t)\). Consequently, a lower bound for all elements of the matrix \(\varvec{J}\) exists. Thus, \(lim_{t\rightarrow 0}s_{\varvec{x}_0}(t)=\varvec{I}\) implies that there exists a \(\tau ^{*}\in (0,\tau _1]\) s.t. the sensitivity matrix \(s_{\varvec{x}_0}(t)\) for \(t\in [0,\tau ^{*}]\) is diagonally dominant. The conclusion follows from this fact.    \(\square \)

The Proof of Lemma 2

Proof

Since the determinant of the Jacobian matrix of the mapping \(\varvec{x}(t)=\varvec{\psi }_{k-1}(t;\varvec{x}((k-1)\tau ,(k-1)\tau )\) w.r.t. any state \(\varvec{x}((k-1)\tau ) \in \varOmega ((k-1)\tau ;\mathcal {I}_0)\) is not zero for \(t\in [(k-1)\tau ,k\tau ]\), then for any fixed \(t\in [(k-1)\tau ,k\tau ]\), the mapping

$$\varvec{x}(t)=\varvec{\psi }_{k-1}(t;\ \cdot ,(k-1)\tau ): \varOmega ((k-1)\tau ;\mathcal {I}_0)\longmapsto \varOmega (t;\mathcal {I}_0)$$

is a bijection and its inverse mapping from \(\varOmega (t;\mathcal {I}_0)\) to \(\varOmega ((k-1)\tau ;\mathcal {I}_0)\) is continuously differentiable. Thus, the sensitivity matrix \(s_{\varvec{x}(k\tau )}(t)\) for \(t\in [k\tau ,(k+1)\tau ]\) satisfies the sensitivity equation:

$$\dot{s}_{\varvec{x}(k\tau )}=\frac{\partial \varvec{f}(\varvec{x},\varvec{x}_{\tau })}{\partial \varvec{x}}s_{\varvec{x}(k\tau )}+\frac{\partial \varvec{f}(\varvec{x},\varvec{x}_{\tau })}{\partial \varvec{x}_{\tau }}\frac{\partial \varvec{x}_{\tau }}{\partial \varvec{x}(k\tau )},$$

with \(s_{\varvec{x}(k\tau )}(k\tau )=\varvec{I}\in \mathbb {R}^{n\times n}\).    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xue, B., Mosaad, P.N., Fränzle, M., Chen, M., Li, Y., Zhan, N. (2017). Safe Over- and Under-Approximation of Reachable Sets for Delay Differential Equations. In: Abate, A., Geeraerts, G. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2017. Lecture Notes in Computer Science(), vol 10419. Springer, Cham. https://doi.org/10.1007/978-3-319-65765-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65765-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65764-6

  • Online ISBN: 978-3-319-65765-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics