Abstract
The paper describes a work in progress on humorous response generation for short-text conversation using information retrieval approach. We gathered a large collection of funny tweets and implemented three baseline retrieval models: BM25, the query term reweighting model based on syntactic parsing and named entity recognition, and the doc2vec similarity model. We evaluated these models in two ways: in situ on a popular community question answering platform and in laboratory settings. The approach proved to be promising: even simple search techniques demonstrated satisfactory performance. The collection, test questions, evaluation protocol, and assessors’ judgments create a ground for future research towards more sophisticated models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
See for example http://www.hongkiat.com/blog/funny-twitter-accounts/.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
References
Adamic, L.A., Zhang, J., Bakshy, E., Ackerman, M.S.: Knowledge sharing and yahoo answers: everyone knows something. In: Proceedings of WWW, pp. 665–674 (2008)
Augello, A., Saccone, G., Gaglio, S., Pilato, G.: Humorist bot: bringing computational humour in a chat-bot system. In: Proceedings of CISIS, pp. 703–708 (2008)
Bellegarda, J.R.: Spoken language understanding for natural interaction: the Siri experience. In: Mariani, J., Rosset, S., Garnier-Rizet, M., Devillers, L. (eds.) Natural Interaction with Robots, Knowbots and Smartphones, pp. 3–14. Springer, New York (2014). doi:10.1007/978-1-4614-8280-2_1
Binsted, K.: Using humour to make natural language interfaces more friendly. In: Proceedings of the AI, ALife and Entertainment Workshop (1995)
Carletta, J.: Assessing agreement on classification tasks: the kappa statistic. Comput. Linguist. 22(2), 249–254 (1996)
Hong, B.A., Ong, E.: Automatically extracting word relationships as templates for pun generation. In: Proceedings of CALC, pp. 24–31 (2009)
Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. TOIS 20(4), 422–446 (2002)
Ji, Z., Lu, Z., Li, H.: An information retrieval approach to short text conversation. arXiv preprint arXiv:1408.6988 (2014)
Jones, K.S., Walker, S., Robertson, S.E.: A probabilistic model of information retrieval: development and comparative experiments. Inf. Process. Manag. 36(6), 779–840 (2000)
Khooshabeh, P., McCall, C., Gandhe, S., Gratch, J., Blascovich, J.: Does it matter if a computer jokes? In: Proceedings of CHI, pp. 77–86 (2011)
Kiddon, C., Brun, Y.: That’s what she said: double entendre identification. In: Proceedings of ACL-HLT, vol. 2, pp. 89–94 (2011)
Lau, J.H., Baldwin, T.: An empirical evaluation of doc2vec with practical insights into document embedding generation. In: Proceedings of the 1st Workshop on Representation Learning for NLP, pp. 78–86 (2016)
Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of ICML, pp. 1188–1196 (2014)
Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: ACL System Demonstrations, pp. 55–60 (2014)
Mihalcea, R., Pulman, S.: Characterizing humour: an exploration of features in humorous texts. In: Gelbukh, A. (ed.) CICLing 2007. LNCS, vol. 4394, pp. 337–347. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70939-8_30
Mihalcea, R., Strapparava, C.: Learning to laugh (automatically): computational models for humor recognition. Comput. Intell. 22(2), 126–142 (2006)
Mihalcea, R., Strapparava, C.: Technologies that make you smile: adding humor to text-based applications. IEEE Intell. Syst. 21(5), 33–39 (2006)
Niculescu, A., van Dijk, B., Nijholt, A., Li, H., See, S.L.: Making social robots more attractive: the effects of voice pitch, humor and empathy. Int. J. Soc. Robot. 5(2), 171–191 (2013)
Rajadesingan, A., Zafarani, R., Liu, H.: Sarcasm detection on Twitter: a behavioral modeling approach. In: Proceedings of WSDM, pp. 97–106 (2015)
Reyes, A., Rosso, P., Veale, T.: A multidimensional approach for detecting irony in Twitter. Lang. Resour. Eval. 47(1), 239–268 (2013)
Ritchie, G.: Can computers create humor? AI Mag. 30(3), 71–81 (2009)
Shahaf, D., Horvitz, E., Mankoff, R.: Inside jokes: identifying humorous cartoon captions. In: Proceedings of KDD, pp. 1065–1074 (2015)
Stock, O., Strapparava, C.: Getting serious about the development of computational humor. In: Proceedings of IJCAI, pp. 59–64 (2003)
Taylor, J.M., Mazlack, L.J.: Computationally recognizing wordplay in jokes. In: Proceedings of CogSci, pp. 1315–1320 (2004)
Tsur, O., Davidov, D., Rappoport, A.: ICWSM-A great catchy name: semi-supervised recognition of sarcastic sentences in online product reviews. In: Proceedings of ICWSM, pp. 162–169 (2010)
Valitutti, A., Toivonen, H., Doucet, A., Toivanen, J.M.: “Let everything turn well in your wife”: generation of adult humor using lexical constraints. In: Proceedings of ACL, vol. 2, pp. 243–248 (2013)
Wen, M., Baym, N., Tamuz, O., Teevan, J., Dumais, S., Kalai, A.: OMG UR funny! Computer-aided humor with an application to chat. In: Proceedings of ICCC, pp. 86–93 (2015)
Yan, R., Song, Y., Wu, H.: Learning to respond with deep neural networks for retrieval-based human-computer conversation system. In: Proceedings of SIGIR, pp. 55–64 (2016)
Yan, Z., Duan, N., Bao, J., Chen, P., Zhou, M., Li, Z., Zhou, J.: DocChat: an information retrieval approach for chatbot engines using unstructured documents. In: Proceedings of ACL, pp. 516–525 (2016)
Yang, D., Lavie, A., Dyer, C., Hovy, E.: Humor recognition and humor anchor extraction. In: Proceedings of EMNLP, pp. 2367–2376 (2015)
Zhang, R., Liu, N.: Recognizing humor on Twitter. In: Proceedings of CIKM, pp. 889–898 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Blinov, V., Mishchenko, K., Bolotova, V., Braslavski, P. (2017). A Pinch of Humor for Short-Text Conversation: An Information Retrieval Approach. In: Jones, G., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2017. Lecture Notes in Computer Science(), vol 10456. Springer, Cham. https://doi.org/10.1007/978-3-319-65813-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-65813-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-65812-4
Online ISBN: 978-3-319-65813-1
eBook Packages: Computer ScienceComputer Science (R0)