

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License

Newcastle University ePrints - eprint.ncl.ac.uk

Gensh R, Rafiev A, Xia F, Romanovsky A, Yakovlev A. Modelling for systems

with holistic fault tolerance. In: 9th International Workshop on Software

Engineering for Resilient Systems (SERENE 2017). 2017, Geneva, Switzerland:

Springer Verlag.

Copyright:

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-65948-0_11

DOI link to article:

https://doi.org/10.1007/978-3-319-65948-0_11

Date deposited:

07/11/2017

Embargo release date:

11 August 2018

http://creativecommons.org/licenses/by-nc/3.0/deed.en_GB
http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=241767
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=241767
https://doi.org/10.1007/978-3-319-65948-0_11
https://doi.org/10.1007/978-3-319-65948-0_11

Modelling for Systems with Holistic Fault Tolerance

Rem Gensh, Ashur Rafiev, Fei Xia, Alexander Romanovsky and Alex Yakovlev

Newcastle University, Newcastle upon Tyne, UK

{r.gensh, ashur.rafiev, fei.xia,

alexander.romanovsky, alex.yakovlev}@newcastle.ac.uk

Abstract. Trade-offs between extra-functional properties, such as performance,

reliability and resource utilisation, have been recognised as crucial in system

design. The concept of Holistic Fault Tolerance (HFT) is aimed at targeting

these trade-offs in run-time system control. Previous work has shown that HFT

systems can have significant complexity, which may require sophisticated mod-

elling at the design stage. This paper presents a novel HFT design methodology

based on hierarchical modelling and stochastic simulations. The former caters

to system complexity and the latter estimates extra-functional properties in the

trade-offs. The method is demonstrated with an application example of number

plate recognition software.

Keywords: Modelling, Holistic Fault Tolerance, Order Graphs, Stochastic Ac-

tivity Networks, Extra-functional properties.

1 Introduction

System modelling aims to create an abstract representation of a designed system. This

process assists in better understanding of the system and gives a possibility to find

and eliminate potential problems at early stages of system development. However, for

complex systems, the system model can also be complex and difficult to use. There-

fore, it is necessary to ensure that only important parts of the system are studied dur-

ing the modelling to reduce comprehension complexity.

A well-accepted method of controlling model complexity is the use of hierarchical

models. Different models may be constructed for the same system or subsystem at

different levels of abstraction. High-level models of high degrees of abstraction tend

to be small and easy to analyse, but also include few details and may provide low

representative resolution or precision for the quantities or parameters being stud-

ied [1]. On the other hand, low-level models of less abstraction may offer finer grain

representation of system details and provide higher resolution for studied parameters.

However, they may have high degrees of complexity and difficult to work with. Hier-

archical modelling provides designers with a means of trading off modelling quality

with model usability.

Another popular method of dealing with the model complexity issue and at the

same time handling run-time unpredictability is stochastic modelling. Quantities and

parameters under study are assumed to be stochastic and models of manageable size

2

can be used to estimate such quantities without precise knowledge of all the contrib-

uting factors such as run-time eventualities [2].

Aspects of study during system design and analysis include functional behaviour

and extra-functional parameters. Functional correctness is important, but extra-

functional parameters can also be significant contributors of the success or failure of a

design. The most interesting extra-functional parameters attracting the attention of

system designers include performance, energy consumption and reliability.

In previous studies, we introduced the notion of Holistic Fault Tolerance (HFT) [3]

and showed that the HFT architecture can be applied to implement the system, taking

into account extra-functional properties, such as reliability, performance and resource

utilisation [4]. And finally, maintainability evaluation of the HFT architecture was

provided in [5].

In these investigations, it was demonstrated that the HFT approach provides better

maintainability of fault tolerance mechanisms. The HFT architecture includes system

components, an HFT controller and a number of agents which supports interactions

between the components and the HFT controller. The HFT run-time is implemented

through control loops that manage the extra-functional parameters through component

configuration. However, there remain challenges faced by the HFT developer during

the design stage. It is not always clear how to choose the system components, which

will be involved in the interaction with the elements of the HFT architecture (essen-

tially the number of control loops). If the designer chooses to involve all system com-

ponents in the interaction with the HFT elements, i.e. have the maximum number of

all possible control loops included, the system would be extremely complex for mod-

elling, implementation and maintenance. On the other hand, unguided control loop

reduction would rarely result in optimal system designs.

This study focuses on modelling that supports design-time and run-time system op-

timisation through the (re)configuration of system components and the efficient use of

control loops. At the same time the model should not be very complex for understand-

ing. Iterative top-down design and stochastic representation of extra-functional pa-

rameters offer promising solutions.

In this paper we propose a general design method supporting HFT systems. This

method makes use of a hierarchical model language, known as order graphs

(OGs) [6], which has good representations of horizontality and verticality issues and

good support for having different levels of abstraction for different parts of a system

model. Also included is an established stochastic model language, known as stochas-

tic activity networks (SANs) [2], which provides facilities such as state-space analysis

and simulation engines.

The proposed design workflow is based on the following key points:

• The characterisation of system components leading to SANs models. These SANs

models can be used to provide estimates of the extra-functional parameters under

study (usually reliability, system utilisation and/or performance) and generate im-

portance costs for potential control loops in the HFT control.

• The concept of controllability is applied to minimise the number of control loops.

3

• The development of a hierarchical model of the HFT system based on OGs. This

model can be used to validate the existence of control loop paths at all levels of

model abstraction.

This paper is organised as follows. Section 2 provides the background describing

SANs, OGs and HFT. Section 3 explains our modelling methodology. Section 4 de-

scribes an HFT case study. Section 5 concludes the paper with discussions.

2 Background

2.1 SANs and Stochastic modelling

SANs is an extension to general stochastic Petri nets (GSPNs) which are based on

Petri nets (PNs) [7]. It inherits the general attributes of PNs including a distributed

representation of system states, making it easy to represent parts of a system directly

as local subsystems, and more straightforward representations of such important is-

sues as concurrency and synchronisation. A well-established method, it is supported

by the mature software tool-kit: Möbius [8].

SANs are capable of representing both deterministic and stochastic events, and

event durations in time. The elements used in this work include a) transitions whose

firing speeds (rates) are specified as stochastic, following given distributions, b) tran-

sitions with multiple firing cases with specific probabilities for each case, and c) input

and output gates with predicates and implications specified through logic functions.

The Möbius tool, used in this paper, incorporates a set of solvers including both

Monte-Carlo simulation and statespace related solvers. Numerical Markovian solu-

tions can be done for steady-state or time averaged interval rewards, but limited to

models with exponentially distributed firing rates. The tool’s concept of “rewards”

can be easily extended to physical parameters, such as power. In this work we use

rewards to evaluate system’s extra-functional properties including performance, relia-

bility (defined as success rate), and resource utilisation.

2.2 Order Graphs and resource modelling

Hierarchical representations have been used for modelling complex systems for a long

time. The idea of separating the “vertical” relation between the layers of abstraction

from the “horizontal” knowledge of the system at each particular layer of abstraction

has been hinted in [9] and then formally defined in Zoom structures [10] as the con-

cepts of verticality and horizontality. Zoom structures are based on partial orders and

are very permissive. In contrast, OGs put a number of constraints on the modelling,

which guarantee consistency between the abstraction layers.

An OG is a graph with nodes representing various system resources arranged in

tree hierarchies. The hierarchies can be built from the knowledge of the system struc-

ture and by similarities of its constituents. The distance from the root relates to the

level of abstraction. The formal definition and properties can be found in [6].

4

The modelling using OGs is an iterative top-down process, starting from the most

abstract representation of the system and gradually adding more details, when moving

to lower levels. The dependencies between the system’s components at the same level

of abstraction are represented with “horizontal” arcs in the graph, hence the horizontal

paths represent transitive dependencies between the elements in the system. The rig-

orous definition of OGs provides a built-in capability of consistency checking by

preserving the resource dependency paths at each level of abstraction.

OG contains the static knowledge of the system and needs to be paired with a dy-

namic model to capture the system behaviour (in our case: SANs). The nodes in OG

that are included in this model relation form a cut. If the cut goes through different

depths in the hierarchy (layers of abstraction), it is called a cross-layer cut. The cut

containing all leaves relates to the most concrete (detail) model of the system. Moving

up in the abstraction hierarchy, thus grouping multiple nodes into one, represents

grouping the corresponding elements in SANs into a single entity by averag-

ing/totalling their parameters (known as black-boxing). This reduces the size of a

model, but also introduces inaccuracy. The trade-off between the model complexity

and accuracy can be achieved from manipulating cross-layer cuts. This method, called

selective abstraction, has been explored in details in [1].

2.3 Holistic Fault Tolerance

The idea of Holistic Fault Tolerance was introduced and developed in [3, 4]. There

are two goals of the HFT architecture. The first goal is to provide a method that al-

lows the developer to design and implement computer systems that are efficient in

terms of performance and resource utilisation. The second goal is to improve the

software maintainability of fault tolerance mechanisms in the system.

A computer system implemented in accordance with the HFT architecture includes

functional components that are responsible for main system tasks and the HFT part.

The HFT part controls the functional components and ensures reliable and efficient

system operation. This part is built around the HFT controller, which is responsible

for distribution of computation resources in the application and provides an overarch-

ing control over the extra-functional properties, such as system performance. HFT

controller also performs a task of re-configuring the system in run-time in case it finds

a better operating point.

The HFT controller interacts with the system components through a set of public

interfaces. Additionally, the controller is assisted with the HFT agents – auxiliary

objects aimed at decreasing the complexity of the HFT architecture. Each HFT agent

is responsible for certain extra-functional property of the system. The HFT agents

monitor and, when it is required, intervene in the control flow of the critical compo-

nents. The typical HFT agent can be responsible for one of the following activities:

performance monitoring, error handling and gathering of diagnostics information. The

structure of an agent can depend on the components it works with, the idea is that the

agent incorporates component-dependent code in order to keep HFT as flexible as

possible. The data gathered by the HFT agents are translated into a component-

independent format and transferred to the HFT controller for dynamic analysis. In

5

case of error handling, the HFT agent requests the HFT controller for a suitable han-

dling action.

It is advised to implement the link between an HFT agent and a functional compo-

nent implicitly for the component. This approach significantly reduces the depend-

ence of the component on the HFT agent, thus the component would focus on imple-

menting only its functional task without tangling with non-functional activities. In our

previous works [4, 5], we used Aspect Oriented Programming [11] in order to im-

prove the development cycle and reduce maintainability effort. In general, the deci-

sions on the structure of HFT agent heavily depend on the software design and the

tasks of the system, however the aim of this work is to address the design decisions in

a methodological way.

3 Modelling methodology

In this section, we consider the goal of the modelling, define extra-functional proper-

ties of the system, and the context in which these properties are analysed. We also

introduce the workflow of the modelling approach.

The goal of the modelling is to provide a method that allows the developer to de-

sign and implement the system based on the HFT architecture. It is necessary to guar-

antee that the system will be efficient with regards to extra-functional properties, such

as reliability, performance and resource utilisation. The modelling assists in defining

efficient points of the interplay between these extra-functional properties. An efficient

design allows the developer to implement such a system, which will be efficient in

terms of this interplay.

Performance is considered as the amount of work completed per unit time. Faster

operation typically requires more resources or can be achieved by reducing the quality

of computation. The work performed by the system is measured in work units. The

processing of each work unit can be finished successfully or unsuccessfully.

Reliability is represented with the success rate, which is defined as the ratio of suc-

cessfully finished work units to the total amount of work units.

Resource utilisation is the amount of computer resources required to process a cer-

tain number of work units. In this context, we define a resource as any facility that

enables computation, which may include CPU cores, application threads, memory,

energy, etc.

As mentioned in Section 2, the system contains functional components that imple-

ment the computation. The HFT control for the extra-functional properties is realised

using knobs and monitors. The knobs are provided by system components as configu-

ration points, and the monitors are instrumentation that provides readings of extra-

functional properties at the component level. The system-wide set of knob states is

called a system configuration. During the system operation, the HFT controller dy-

namically choses the most suitable system configuration, depending on the history of

monitor data.

An instance of such interaction between the HFT elements and the functional sys-

tem components is defined as a control loop. It can be considered as a special inter-

6

face between the components and the HFT part. The control loop is managed only by

the HFT part and is implicit to the system components.

3.1 Workflow of the modelling approach

The workflow of the HFT system modelling approach is described in Fig. 1. Each of

the steps is described in a subsequent subsection. Note that order graph modelling

happens in parallel to the right hand main branch of the workflow.

Fig. 1. Workflow diagram

3.2 Characterisation of the system’s extra-functional components

The designer should characterise the extra-functional properties of each individual

component. If the component supports multiple configurations or algorithms of pro-

cessing, the characterisation should be done for each individual configuration. The

full result of a characterisation pertaining to some component and some extra-

functional property describes the value of that property when executing that compo-

nent. Characterisation is not done beyond component level.

Order Graph

Modelling

Characterisation

experiments

SANs

modelling

Stochastic

simulations

Control loop

pruning

Validation

System-only model Component

characteristics

Estimated extra-functional

properties

List of

control loops

Model of the system

with the HFT

7

3.3 Building and simulating the SANs model of the system

In this step the SAN model of the system is built using component characterisations

from the previous step and the system-only OG model. The granularity of the SAN

model for any part of the system is determined by the OG modelling step (Fig. 1) and

the parameter values are obtained from the characterisation step. The characterisation

step usually pertains to the SAN model of the finest detail, because there is no point

of developing a SAN model at a finer level of detail than the existing characterisation

data. If the OG step suggests a higher level of abstraction, it is possible to derive SAN

models of less detail than the characterisation data, for instance by running simula-

tions at the characterisation level of detail then abstracting from the results.

From characterisation to the final SAN model for simulations the approach is bot-

tom-up, but the OG step is usually top-down. There is no conflict because in order to

determine the granularity of the final SAN model the entire OG model covering all

levels of abstraction needs to have been established. In a way discovering the SAN

model is a process of raising the level of abstraction from the bottom traversing the

OG until a satisfactory SAN has been found.

The preferred tool for working with SANs is Möbius [8]. The main point of this

step is that the SAN system model, assembled from component models, supports

system-wide analysis of the modelled extra-functional properties from component-

level characterisation data. The most practical analysis method for SAN models of

HFT is simulation, as other forms of analysis such as state space studies tend to be

restricted to very small models. However, Möbius does provide non-simulation solv-

ers if and when they can and need to be used.

3.4 Control loop pruning

The estimated values of system-wide extra-functional properties, obtained from the

previous step, can be used to reduce the complexity of the HFT controller, by elimi-

nating unnecessary control loops.

The method is based on the problem of preserving controllability [16] while reduc-

ing the number of knobs. It assumes that the number of monitors is both sufficient and

necessary to represent the extra-functional properties under study. The monitor values

are considered state variables.

We use simulations to build system transfer function [16] relating knobs to moni-

tors. This is achieved by analysing differentials in the estimated monitor values from

simulations. Ideally, this requires an exhaustive set of simulation covering all combi-

nations of knob values. However, it is possible to apply known optimisation methods,

such as Monte-Carlo [17], to improve the usability of the method.

From this database of state relations, it is possible to determine the smallest set of

knobs that maintains controllability.

Although in this paper we deal only with deciding what control loops to include in

an HFT system, the off-line design flow described here can yield valuable quantitative

data that may be helpful for the detailed design of run-time control. For instance, the

8

SAN models may provide a set of reference points which may be used in the designs

of individual control loops.

3.5 Validation using OG hierarchy

As mentioned in Section 2, OG modelling provides a top-down workflow that helps

the developer to incrementally add the details in the system design. In the proposed

workload, the dependencies in the graph represent interactions between the element of

the system and provides paths for the control loops. A rigorous path consistency

checking between the layers of abstraction guarantees that the designed HFT control-

ler is consistent with the control loops established in the previous steps of the work-

flow.

Fig. 2. A general template for HFT Order Graph model

Fig. 2 illustrates the hierarchical model of the system with the HFT architecture in

three levels of detail. At the top level, there is only the system with the HFT architec-

ture. The second level contains graphic user interface, backend or functional part of

the system and HFT part. Information flow between the backend and the HFT is

shown in both directions. The next level represents the backend is decomposed to the

system components and the HFT part decomposed to the HFT controller and HFT

agents. For simplicity, the figure shows only one component and only one agent. At

this level, the control loops between the system components and the HFT elements

should start to appear.

HFT

controller

Decision

maker

HFT

policies

System

state

history

HFT agent
System

component

3rd party

sub-

components

Critical

part

Public

interface
Settings

Monitoring

logic

Local

decision

maker

Intervention

logic

System

with the

HFT

Level 2

Level 3

Level 4

GUI
Back

end
HFT

Level 1

9

The most detailed level of the hierarchical model considers the inner structure of

the system components and the HFT elements. The system component may include

third-party subcomponents, public interfaces, component settings and critical parts. A

possible internal structure of an HFT agent consists of monitoring logic, intervention

logic and local decision maker. The HFT controller includes the decision maker, the

system state history (or dynamic HFT data) and the HFT policies (or static HFT data).

Connections represented by the dashed lines assume that for better maintainability

it is preferable to implement this link in such a way that the system component was

not aware of implementation details of monitoring and intervention logic in the HFT

agent. HFT agents do not directly provide performance of reliability benefits. They

were introduced to simplify the developing and improve understanding of the systems

with the HFT. It was shown [5] that such configuration supports maintainability of the

system. This is the reason why we consider decomposition of the HFT architecture to

the HFT controller and the HFT agents.

4 Use case

4.1 Case study application

As a use case, we have chosen the application for the recognition of the UK number

plates [4, 5]. The input of the application is a set of images. As an output, the applica-

tion links each image with recognition results that include the contour of the number

plate, recognised string and the probability of correct recognition.

The functional part of the application consists of several components. The Graph-

ical User Interface (GUI) component is the frontend of the application, which allows

the user to upload the images. These images are sent to the Initial Image Processing

(IIP) component. At this stage, every image undergoes an initial processing, which

includes various filters, searching of the number plate on the image, cropping of the

number plate from the image and elimination of the perspective skews of the number

plate cutout. Two algorithms for number plate search can be applied: OpenCV-based

rectangle detection and HAAR cascade [12] trained to recognise the area with the UK

number plate. If the number plate is found and cropped it is put to Number Plates

Queue (NPQ). When the NPQ is not empty, the Optical Character Recognition (OCR)

component takes available number plate cutout and performs the text recognition on

the cutout. There are two OCR algorithms in the OCR component: Tesseract [13] and

number plate recognition algorithm described in [14]. If the OCR recognises the text

on the cutout, this text is checked by the Result Checker (RC) component to ensure

compliance of the car number with a national format. These additional algorithms are

introduced to provide redundancy and increase reliability of the application.

The UML diagram of the application is shown in Fig. 3. GUI does not participate

in the HFT scheme and it should not be considered in details in the model. Interfaces

between the functional components (IIP and OCR) and the HFT controller are omitted

to make the diagram clearer.

In both IIP and OCR components the images are processed concurrently. The HFT

controller specifies the most suitable number of working threads for each component.

10

The Performance agent monitors the execution time of the IIP and OCR components.

The Error Handling agent is responsible for handling the errors in the IIP and OCR

component. An error implies a deviation from the correct service [15] and it is not

necessarily exception only. Impossibility to find the number plate or low probability

of the recognition is considered as an error as well. At the same time, not all excep-

tions are regarded as errors. If the error is detected by Error Handling agent, it re-

quests the HFT controller for a suitable error recovery action, which could vary de-

pending on current system operation.

Fig. 3. UML diagram of the use case application

4.2 Characterisation of the components

For the characterisation, we have chosen the IIP and the OCR components, since they

are the most critical components of the application. Characterisation data is presented

in Table 1 and Table 2. The input data varies significantly for the given application,

hence we have chosen three groups of images distinguished by size: small, medium

and large. Time and reliability of the image processing significantly depends on the

image size.

Table 1. Characterisation of the IIP component

Original image size

Number plate detection algorithm

Rectangle detection HAAR cascade

Average

time

Average

reliability

Average

time

Average

reliability

Small < 200 KB 20 ms 85% 9.3 ms 77%

Medium 200 KB – 1MB 85 ms 80% 76 ms 85%

Large 1 MB – 7 MB 143 ms 72% 328 ms 86%

11

Table 2. Characterisation of the OCR component

Original image size

Optical Character Recognition algorithm

OpenCV implementation Tesseract

Average

time

Average

reliability

Average

time

Average

reliability

Small < 200 KB 23 ms 70% 33 ms 75%

Medium 200 KB – 1MB 29 ms 73% 37 ms 78%

Large 1 MB – 7 MB 45 ms 48% 50 ms 62%

4.3 SAN modelling and simulations of the system

With this characterisation data, we can build the SAN models in Möbius. A detailed

SAN model for the two components IIP and OCR, each in three versions small, medi-

um and large is shown in Fig. 4. The fundamental states for each component version

are working and idle. Working means that this component version is in execution and

idle means that it is not in execution. The model is simplified to put all idles together.

This means that for, e.g. IIP, the IIP_idle place is initialised with the with the number

of threads given to the IIP component. This may be known as the IIP capacity of the

system. Each completion of an IIP component version puts a token back to this idle

place. Each IIP component version has a probability of success Ps and a probability of

failure 1-Ps and this is represented by the stochastic timed transitions IIP_finish. The

OCR component models have the same structure. Between the IIP and OCR blocks,

three queues are modelled with the standard SAN representation for queues or buff-

ers. The IIP_start transition on the left generates input images stochastically according

to probability functions and rates that can be set in the model.

Fig. 4. Detailed SANs model of the use case application in Möbius

12

Fig. 5. Reduced SANs model of the use case application in Möbius

The occurrences of failure are tracked by the markings of the failure places and the

overall number of successful recognitions is recorded in the final done place at the

right end of the net. Running simulations with this model produces success and failure

rates, resource utilisation (e.g. the average number of threads being active) and overall

performance.

This model turns out to require somewhat significant time (more than a few

minutes) to simulate. As a result, by making OG analysis and studying the characteri-

sation data, we decided to derive a reduced model, which is shown in Fig. 5.

The reduced model only has a single OCR component version by combining the

three different versions in the detailed model into one using the average behaviour.

The reason behind this is that the version pertaining to large size is significantly slow-

er than the others, which are very similar. Intuitively, component capacities are used

more on the faster processing versions as they tend to grab the token from the idle

place more frequently.

The reduced model required simulation times that are an order of magnitude short-

er than the detailed model, and they produced very close results with differences with-

in 5% on all the extra-functional properties being studied. Some simulation results are

shown in Table 3.

Table 3. Simulation results

Configuration Estimates

IIP

algorithm

IIP

threads

OCR

algorithm

OCR

threads

Core

allocation

Success

rate

Image

time

Rectangle 4 OpenCV 4 4.55 0.543 44.89

Rectangle 2 OpenCV 6 2.40 0.550 55.91

Rectangle 6 OpenCV 2 6.63 0.548 40.77

Rectangle 1 OpenCV 7 1.24 0.528 87.11

Rectangle 7 OpenCV 1 7.49 0.559 40.68

Rectangle 1 OpenCV 1 1.22 0.529 88.26

Rectangle 3 OpenCV 1 3.40 0.553 48.86

HAAR 4 Tesseract 4 4.53 0.574 90.54

HAAR 2 Tesseract 6 2.36 0.577 116.89

HAAR 6 Tesseract 2 6.57 0.568 77.46

13

Rectangle 4 Tesseract 4 5.42 0.561 46.23

Rectangle 2 Tesseract 6 2.86 0.564 56.53

Rectangle 6 Tesseract 2 7.27 0.551 41.91

HAAR 4 OpenCV 4 4.26 0.561 90.01

HAAR 2 OpenCV 6 2.20 0.589 117.79

HAAR 6 OpenCV 2 6.31 0.557 76.98

In these particular simulations, we wanted to find out if the relative numbers of IIP

and OCR components executed affect the execution time, resource utilisation and

reliability. It was found that the reliability stays about the same, but running more IIP

components than OCR components improved the overall execution time and resource

utilisation (more components get executed simultaneously, pressing more cores and

reducing idle time and queue length).

In case if the observed change in reliability is considered insignificant, the reduc-

tion of control loops leads to removal of all knobs except the number of IIP threads.

This remaining knob provides the control over resource utilisation and performance.

On the other hand, if the reliability difference is considered significant, all knobs con-

tribute to controlling the system properties.

4.4 Hierarchical model of the system

A hierarchical model of the system is built following the general template (Fig. 2) and

is shown in Fig. 6.

Fig. 6. Hierarchical model of the system

At Level 1 of the system Order Graph there is only one node “Car Number Plate

Recognition Application”. Level 2 distinguishes between the HFT part of the system

HFT

controller

Performance

agent

GUI
Back

end
HFT

Error

handling

agent

IIP NPQ OCR

Level 1

Level 2

Level 3

CNPR

App

14

and functional part, which is comprised of the GUI and system backend. At Level 3

all crucial components of the system and the HFT part are illustrated. We do not

model GUI behaviour, therefore we stop at Level 2 for GUI. We have chosen to de-

compose the backend to IIP, NPQ and OCR components because it follows the UML

structure of the application. The HFT part is decomposed to the HFT controller, Per-

formance Agent and Error Handling Agent. At Level 4 there is further decomposition

to the inner structure of the functional components and the HFT elements. Level 4 is

not illustrated here due to the number of elements at this level.

There is uni-directional information flow from the IIP, the NPQ and the OCR

components to the Performance agent, because this agent only monitors the compo-

nents, but it does not affect the control flow of the components. In contrast, the Error

Handling agent has bi-directional information flow, since it intervenes in the control

flow of IIP and OCR components in order to handle the errors. The interfaces be-

tween the agents and components are represented by dashed lines because they are

implicit for the components. The HFT controller, in turn, utilises public interfaces of

the IIP and OCR components to reconfigure the components and performs fault han-

dling of the application. In addition, there are information flows between the HFT

controller and the HFT agents. It can be seen that all control loops mentioned in Sec-

tion 4.4 exist in this Order Graph, which validates the correctness of the selected HFT

architecture.

5 Conclusion

In this study, we elaborated the general method for modelling computer systems with

the HFT at the early stages of the system design. The given method simplifies the

modelling process and allows the developer to adjust the system at the early stage to

achieve efficient operation after the implementation.

As a part of the workflow, we build the SANs model of the system using Möbius

tool. After that we obtain the list of interfaces for the HFT control representing the

control loops between system components and extra-functional properties of the sys-

tem. At the same time, we create a hierarchical model of the system with the HFT

using Order Graphs. The method has been demonstrated with a use case application

of UK number plate recognition.

Currently we are working on the evaluation of the efficiency of the HFT architec-

ture in terms of performance and resource utilisation. The evaluation is based on the

comparison of these properties in two functionally identical systems. One system is

implemented with the HFT architecture and another system uses the standard ap-

proach to fault tolerance. The presented modelling method is expected to significantly

assist in adjusting the system to prepare it for the evaluation.

As a future work we are planning to ensure scalability of the HFT approach, and

show that the HFT architecture can be applied for large-scale systems. We propose to

introduce the idea of adaptive holistic fault tolerance, that will be able to control the

HFT agents in run-time depending on the current system state. To do this the present-

15

ed modelling approach should be extended to include the reconfiguration of the HFT

architecture elements.

References

1. Rafiev, A., Xia, F., Iliasov, A., Gensh, R., Aalsaud, A., Romanovsky, A., Yakovlev, A.:

Selective abstraction and stochastic methods for scalable power modelling of heterogene-

ous systems. In: 2016 Forum on Specification and Design Languages (FDL), pp. 1-7.

(2016)

2. Sanders, W.H., Meyer, J.F.: Stochastic activity networks: formal definitions and concepts.

In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) Lectures on formal methods and per-

formance analysis, pp. 315-343. Springer-Verlag New York, Inc. (2002)

3. Gensh, R., Romanovsky, A., Yakovlev, A.: On structuring holistic fault tolerance. Pro-

ceedings of the 15th International Conference on Modularity (MODULARITY 2016).

ACM, Málaga, Spain (2016)

4. Gensh, R., Rafiev, A., Garcia, A., Xia, F., Romanovsky, A., Yakovlev, A.: Architecting

Holistic Fault Tolerance. In: 2017 IEEE 18th International Symposium on High Assurance

Systems Engineering (HASE), pp. 5-8. (2017)

5. Gensh, R., Garcia, A., Romanovsky, A.: Experience Report: Evaluation of Holistic Fault

Tolerance. School of Computing Science Technical Report Series. School of Computing

Science, Newcastle University (2017)

6. Rafiev, A., Xia, F., Iliasov, A., Gensh, R., Aalsaud, A., Romanovsky, A., Yakovlev, A.:

Order Graphs and Cross-Layer Parametric Significance-Driven Modelling. In: 2015 15th

International Conference on Application of Concurrency to System Design, pp. 110-119.

(2015)

7. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall PTR (1981)

8. The Möbius modelling tool. https://www.mobius.illinois.edu.

9. Zurcher, F.W., Randell, B.: Iterative Multi-Level Modeling - A Methodology for Comput-

er System Design. In: Proceedings IFIP Congress 68, pp. 138-142. Press, (1968)

10. Ehrenfeucht, A., Rozenberg, G.: Zoom structures and reaction systems yield exploration

systems. International Journal of Foundations of Computer Science. 25, 275-305 (2014).

11. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Greenwich, CT,

USA: Manning Publications Co. (2003)

12. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)

13. Smith, R.: An Overview of the Tesseract OCR Engine. In: Ninth International Conference

on Document Analysis and Recognition (ICDAR 2007), pp. 629-633. (2007)

14. Baggio, D.L., Emami, S., Escrivá, D.M., Ievgen, K., Mahmood, N., Saragih, J., Shilkrot,

R.: Mastering OpenCV with Practical Computer Vision Projects. Birmingham: Packt Pub-

lishing Ltd (2012)

15. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of

Dependable and Secure Computing. Transactions on Dependable and Secure Computing.

1, 11-33 (2004)

16. Bubnicki, Z.: Modern Control Theory. Springer-Verlag Berlin Heidelberg (2005)

17. Metropolis, N., Ulam, S.: The Monte Carlo Method. Journal of the American Statistical

Association (1949)

