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Abstract. Automatic segmentation of an organ and its cystic region is
a prerequisite of computer-aided diagnosis. In this paper, we focus on
pancreatic cyst segmentation in abdominal CT scan. This task is impor-
tant and very useful in clinical practice yet challenging due to the low
contrast in boundary, the variability in location, shape and the different
stages of the pancreatic cancer. Inspired by the high relevance between
the location of a pancreas and its cystic region, we introduce extra deep
supervision into the segmentation network, so that cyst segmentation
can be improved with the help of relatively easier pancreas segmenta-
tion. Under a reasonable transformation function, our approach can be
factorized into two stages, and each stage can be efficiently optimized
via gradient back-propagation throughout the deep networks. We collect
a new dataset with 131 pathological samples, which, to the best of our
knowledge, is the largest set for pancreatic cyst segmentation. Without
human assistance, our approach reports a 63.44% average accuracy, mea-
sured by the Dice-Sørensen coefficient (DSC), which is higher than the
number (60.46%) without deep supervision.

1 Introduction

In 2012, pancreatic cancers of all types were the 7th most common cause of
cancer deaths, resulting in 330,000 deaths globally [15]. By the time of diagnosis,
pancreatic cancer has often spread to other parts of the body. Therefore, it is
very important to use medical imaging analysis to assist identifying malignant
cysts in the early stages of pancreatic cancer to increase the survival chance
of a patient [3]. The emerge of deep learning has largely advanced the field
of computer-aided diagnosis (CAD). With the help of the state-of-the-art deep
convolutional neural networks [7][14], such as the fully-convolutional networks
(FCN) [10] for semantic segmentation, researchers have achieved accurate seg-
mentation on many abdominal organs. There are often different frameworks for
segmenting different organs [1][13]. Meanwhile, it is of great interest to find the
lesion area in an organ [16][2][5], which, frequently, is even more challenging due
to the tiny volume and variable properties of these parts.
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This paper focuses on segmenting pancreatic cyst from abdominal CT scan.
Pancreas is one of the abdominal organs that are very difficult to be segmented
even in the healthy cases [13][12][17], mainly due to the low contrast in the
boundary and the high variability in its geometric properties. In the pathological
cases, the difference in the pancreatic cancer stage also impacts both the mor-
phology of the pancreas and the cyst [4][8]. Despite the importance of pancreatic
cyst segmentation, this topic is less studied: some of the existing methods are
based on old-fashioned models [6], and a state-of-the-art approach [3] requires
a bounding box of the cyst to be annotated beforehand, as well as a lot of
interactive operations throughout the segmentation process to annotate some
voxels on or off the target. These requirements are often unpractical when the
user is not well knowledgable in medicine (e.g., a common patient). This paper
presents the first system which produces reasonable pancreatic cyst segmentation
without human assistance on the testing stage.

Intuitively, the pancreatic cyst is often closely related to the pancreas, and
thus segmenting the pancreas (relatively easier) may assist the localization and
segmentation of the cyst. To this end, we introduce deep supervision [9] into the
original segmentation network, leading to a joint objective function taking both
the pancreas and the cyst into consideration. Using a reasonable transformation
function, the optimization process can be factorized into two stages, in which
we first find the pancreas, and then localize and segment the cyst based on
the predicted pancreas mask. Our approach works efficiently based on a recent
published coarse-to-fine segmentation approach [17]. We perform experiments on
a newly collected dataset with 131 pathological samples from CT scan. Without
human assistance on the testing stage, our approach achieves an average Dice-
Sørensen coefficient (DSC) of 63.44%, which is practical for clinical applications.

2 Approach

2.1 Formulation

Let a CT-scanned image be a 3D volume X. Each volume is annotated with
ground-truth pancreas segmentation P? and cyst segmentation C?, and both
of them are of the same dimensionality as X. P ?

i = 1 and C?
i = 1 indicate a

foreground voxel of pancreas and cyst, respectively. Denote a cyst segmentation
model as M : C = f(X;Θ), where Θ denotes the model parameters. The loss
function can be written as L(C,C?). In a regular deep neural network such as
our baseline, the fully-convolutional network (FCN) [10], we optimize L with
respect to the network weights Θ via gradient back-propagation. To deal with
small targets, we follow [11] to compute the DSC loss function: L(C,C?) =
2×

∑
iCiC

?
i∑

iCi+
∑

iC
?
i

. The gradient ∂L(C,C?)
∂C can be easily computed.

Pancreas is a small organ in human body, which typically occupies less than
1% voxels in a CT volume. In comparison, the pancreatic cyst is even smaller.
In our newly collected dataset, the fraction of the cyst, relative to the entire
volume, is often much smaller than 0.1%. In a very challenging case, the cyst
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Input Image

Case #123

Global Segmentation

DSC = 0.00%

Local Segmentation

DSC = 85.21%

Fig. 1. A relatively difficult case in pancreatic cyst segmentation and the results
produced by different input regions, namely using the entire image and the region
around the ground-truth pancreas mask (best viewed in color). The cystic, predicted
and overlapping regions are marked by red, green and yellow, respectively. For better
visualization, the right two figures are zoomed in w.r.t. the red frame.

only occupies 0.0015% of the volume, or around 1.5% of the pancreas. This
largely increases the difficulty of segmentation or even localization. Figure 1
shows a representative example where cyst segmentation fails completely when
we take the entire 2D slice as the input.

To deal with this problem, we note that the location of the pancreatic cyst
is highly relevant to the pancreas. Denote the set of voxels of the pancreas as
P? = {i | P ?

i = 1}, and similarly, the set of cyst voxels as C? = {i | C?
i = 1}.

Frequently, a large fraction of C? falls within P? (e.g., |P? ∩ C?| / |C?| > 95% in
121 out of 131 cases in our dataset). Starting from the pancreas mask increases
the chance of accurately segmenting the cyst. Figure 1 shows an example of using
the ground-truth pancreas mask to recover the failure case of cyst segmentation.

This inspires us to perform cyst segmentation based on the pancreas region,
which is relatively easy to detect. To this end, we introduce the pancreas mask
P as an explicit variable of our approach, and append another term to the
loss function to jointly optimize both pancreas and cyst segmentation networks.
Mathematically, let the pancreas segmentation model be MP : P = fP(X;ΘP),
and the corresponding loss term be LP(P,P?). Based on P, we create a smaller
input region by applying a transformation X′ = σ[X,P], and feed X′ to the
next stage. Thus, the cyst segmentation model can be written as MC : C =
fC(X′;ΘC), and we have the corresponding loss them LC(C,C?). To optimize
both ΘP and ΘC, we consider the following loss function:

L(P,P?,C,C?) = λLP(P,P?) + (1− λ)LC(C,C?), (1)

where λ is the balancing parameter defining the weight between either terms.

2.2 Optimization

We use gradient descent for optimization, which involves computing the gradients
over ΘP and ΘC. Among these, ∂L

∂ΘC
= ∂LC

∂ΘC
, and thus we can compute it via
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Fig. 2. The framework of our approach (best viewed in color). Two deep segmentation
networks are stacked, and two loss functions are computed. The predicted pancreas
mask is used in transforming the input image for cyst segmentation.

standard back-propagation in a deep neural network. On the other hand, ΘP is
involved in both loss terms, and applying the chain rule yields:

∂L
∂ΘP

=
∂LP

∂ΘP
+
∂LC

∂X′
· ∂X

′

∂P
· ∂P
∂ΘP

. (2)

The second term on the right-hand side depends on the definition of X′ =
σ[X,P]. In practice, we define a simple transformation to simplify the compu-
tation. The intensity value (directly related to the Hounsfield units in CT scan)
of each voxel is either preserved or set as 0, and the criterion is whether there
exists a nearby voxel which is likely to fall within the pancreas region:

X ′i = Xi × I{∃j | Pj > 0.5 ∧ |i− j| < t}, (3)

where t is the threshold which is the farthest distance from a cyst voxel to the
pancreas volume. We set t = 15 in practice, and our approach is not sensitive to

this parameter. With this formulation, i.e.,
∂X′

i

∂Pj
= 0 almost everywhere. Thus, we

have ∂X′

∂P = 0 and ∂L
∂ΘP

= ∂LP

∂ΘP
. This allows us to factorize the optimization into

two stages in both training and testing. Since ∂L
∂ΘP

and ∂L
∂ΘC

are individually
optimized, the balancing parameter λ in Eqn (1) can be ignored. The overall
framework is illustrated in Figure 2. In training, we directly set X′ = σ[X,P?],
so that the cyst segmentation model MC receives more reliable supervision. In
testing, starting from X, we compute P, X′ and C orderly. Dealing with two
stages individually reduces the computational overheads. It is also possible to
formulate the second stage as multi-label segmentation.

The implementation details follow our recent work [17], which achieves the
state-of-the-art performance in the NIH pancreas segmentation dataset [13].
Due to the limited amount of training data, instead of applying 3D networks
directly, we cut each 3D volume into a series of 2D pieces, and feed them into a
fully-convolutional network (FCN) [10]. This operation is performed along three
directions, namely the coronal, sagittal and axial views. At the testing stage, the
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cues from three views are fused, and each voxel is considered to fall on foreground
if at least two views predict so.

In the pathological dataset, we observe a large variance in the morphology
of both pancreas and cyst. which increases the difficulty for the deep network to
converge in the training process. Consequently, using one single model may result
in less stable segmentation results. In practice, we use the FCN-8s model [10]
from the pre-trained weights on the PascalVOC dataset. This model is based on
a 16-layer VGGNet [14], and we believe a deeper network may lead to better
results. We fine-tune it through 60K iterations with a learning rate of 10−5.
Nine models, namely the snapshots after {20K, 25K, . . . , 60K} iterations, are
used to test each volume, and the final result is obtained by computing the
union of nine predicted foreground voxel sets. Regarding other technical details,
we simply follow [17], including using the DSC loss layer instead of the voxel-wise
loss layer to prevent the bias towards background [11], and applying a flexible
convergence condition for fine-tuning at the testing stage.

3 Experiments

3.1 Dataset and Evaluation

We evaluate our approach on a dataset collected by the radiologists in our team.
This dataset contains 131 contrast-enhanced abdominal CT volumes, and each
of them is manually labeled with both pancreas and pancreatic cyst masks. The
resolution of each CT scan is 512×512×L, where L ∈ [358, 1121] is the number
of sampling slices along the long axis of the body. The slice thickness varies
from 0.5mm–1.0mm. We split the dataset into 4 fixed folds, and each of them
contains approximately the same number of samples. We apply cross validation,
i.e., training our approach on 3 out of 4 folds and testing it on the remaining
one. We measure the segmentation accuracy by computing the Dice-Sørensen
Coefficient (DSC) for each 3D volume. This is a similarity metric between the
prediction voxel set A and the ground-truth set G, its mathematical form is

DSC(A,G) = 2×|A∩G|
|A|+|G| . We report the average DSC score together with other

statistics over all 131 testing cases from 4 testing folds.

3.2 Results

Cystic Pancreas Segmentation. We first investigate pathological pancreas
segmentation which serves as the first stage of our approach. With the baseline
approach described in [17], we obtain an average DSC of 79.23± 9.72%. Please
note that this number is lower than 82.37 ± 5.68%, which was reported by
the same approach in the NIH pancreas segmentation dataset with 82 healthy
samples. Meanwhile, we report 34.65% DSC in the worst pathological case, while
this number is 62.43% in the NIH dataset [17]. Therefore, we can conclude that
a cystic pancreas is more difficult to segment than a normal case.
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Method Mean DSC Max/Min DSC

Pancreas Segmentation, w/ GT Pancreas B-Box 83.99 ± 4.33 93.82/69.54

Pancreas Segmentation 79.23 ± 9.72 92.95/34.65

Cyst Segmentation, w/ GT Cyst B-Box 77.92 ± 12.83 96.14/24.69

Cyst Segmentation, w/o Deep Supervision 60.46 ± 31.37 95.67/0.00

Cyst Segmentation, w/ Deep Supervision 63.44± 27.71 95.55/0.00

Table 1. Pancreas and cyst segmentation accuracy, measured by DSC (%), produced
by different approaches. Bold fonts indicate the results that oracle information (ground-
truth bounding box) is not used. With deep supervision, the average accuracy cyst
segmentation is improved, and the standard deviation is decreased.

Pancreatic Cyst Segmentation. Based on the predicted pancreas mask,
we now study the pancreatic cyst segmentation which is the second stage in
our approach. Over 131 testing cases, our approach reports an average DSC of
63.60±27.71%, obtaining 2.98% absolute or 4.92% relative accuracy gain over the
baseline. The high standard deviation (27.71%) indicates the significant variance
in the difficulty of cyst segmentation. On the one hand, our approach can report
rather high accuracy (e.g., > 95% DSC) in some easy cases. On the other hand,
in some challenging cases, if the oracle cyst bounding box is unavailable, both
approaches (with or without deep supervision) can come into a complete failure
(i.e., DSC is 0%). In comparison, our approach with deep supervision misses 8
cyst cases, while the version without deep supervision misses 16.

To the best of our knowledge, pancreatic cyst segmentation is very few
studied previously. A competitor is [3] published in 2016, which combines ran-
dom walk and region growth for segmentation. However, it requires the user
to annotate the region-of-interest (ROI) beforehand, and provide interactive
annotations on foreground/background voxels throughout the segmentation pro-
cess. In comparison, when the bounding box is provided or not, our approach
achieves 77.92% and 63.44% average accuracies, respectively. Being cheap or free
in extra annotation, our approach can be widely applied to automatic diagnosis,
especially for the common users without professional knowledge in medicine.

Visualization. Three representative cases are shown in Figure 3. In the first
case, both the pancreas and the cyst can be segmented accurately from the
original CT scan. In the second case, however, the cyst is small in volume
and less discriminative in contrast, and thus an accurate segmentation is only
possible when we roughly localize the pancreas and shrink the input image size
accordingly. The accuracy gain of our approach mainly owes to the accuracy gain
of this type of cases. The third case shows a failure example of our approach, in
which an inaccurate pancreas segmentation leads to a complete missing in cyst
detection. Note that the baseline approach reports a 59.93% DSC in this case,
and, if the oracle pancreas bounding box is provided, we can still achieve a DSC
of 77.56%. This inspires us that cyst segmentation can sometimes help pancreas
segmentation, and this topic is left for future research.



Deep Supervision for Pancreatic Cyst Segmentation in Abdominal CT Scans 7

Input Image

Case #111

Pancreas Segmentation

DSC = 68.21%

Cyst Segmentation (-)

DSC = 74.86%

Cyst Segmentation (+)

DSC = 84.06%

Case #123 DSC = 73.59% DSC = 0.00%DSC = 84.70%

Fine-scaled Input

Case #130 DSC = 34.65% DSC = 59.93%DSC = 0.00%

This slice
is ignored 
in testing

Fig. 3. Sample pancreas and pancreatic cyst segmentation results (best viewed in
color). From left to right: input image (in which pancreas and cyst are marked in red
and green, respectively), pancreas segmentation result, and cyst segmentation results
when we apply deep supervision (denoted by +) or not (-). The figures in the right
three columns are zoomed in w.r.t. the red frames. In the last example, pancreas
segmentation fails in this slice, resulting in a complete failure in cyst segmentation.

4 Conclusions

This paper presents the first system for pancreatic cyst segmentation which can
work without human assistance on the testing stage. Motivated by the high
relevance of a cystic pancreas and a pancreatic cyst, we formulate pancreas
segmentation as an explicit variable in the formulation, and introduce deep
supervision to assist the network training process. The joint optimization can
be factorized into two stages, making our approach very easy to implement.
We collect a dataset with 131 pathological cases. Based on a coarse-to-fine
segmentation algorithm, our approach produces reasonable cyst segmentation
results. It is worth emphasizing that our approach does not require any extra
human annotations on the testing stage, which is especially practical in assisting
common patients in cheap and periodic clinical applications.

This work teaches us that a lesion can be detected more effectively by consid-
ering its highly related organ(s). This knowledge, being simple and straightfor-
ward, is useful in the future work in pathological organ or lesion segmentation.
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