Skip to main content

Multispectral Data Acquisition in the Assessment of Driver’s Fatigue

  • Conference paper
  • First Online:
Smart Solutions in Today’s Transport (TST 2017)

Abstract

Many factors contribute for the occurrence of the road accidents. The most important are the behaviour of drivers and the level of their fatigue. Appropriate recognition of driver’s fatigue is now becoming an important research issue, the results of which are beginning to be implemented in automotive driver assistant systems. In the article the authors present the characteristics of selected multispectral data (visual image, depth map, thermal image) used for automatic assessment of driver fatigue and the station for their acquisition. For the study a simulator station has been proposed and developed. It reflects the driver’s cabin (based on physical measurements of a wide range of vehicles), is equipped with the appropriate video sensors (including depth and thermal recorders) and monitors showing real driving situations. The acquired data streams can be used for research on the development of non-invasive methods for assessing the degree of driver fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weller, G., Schlag, B.: Road user behavior model. Deliverable D8 project RIPCORD-ISERET, 6 Framework Programme of the European Union. http://ripcord.bast.de/ (2007)

  2. Smolensky, M.H., et al.: Sleep disorders, medical conditions, and road accident risk. Accid. Anal. Prev. 43(2), 533–548 (2011)

    Article  Google Scholar 

  3. Virginia Tech Transportation Institute: Day or Night, Driving while Tired a Leading Cause of Accidents. http://www.vtnews.vt.edu/articles/2013/04/041513-vtti-fatigue.html. Accessed 12 Feb 2017

  4. Krishnasree, V., Balaji, N., Rao, P.S.: A real time improved driver fatigue monitoring system. WSEAS Trans. Signal Process. 10, 146–155 (2014)

    Google Scholar 

  5. Cyganek, B., Gruszczynski, S.: Hybrid computer vision system for drivers’ eye recognition and fatigue monitoring. Neurocomputing 126, 78–94 (2014)

    Article  Google Scholar 

  6. Dinges, D.F., Powell, J.W.: Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behav. Res. Methods Instrum. Comput. 17, 652–655 (1985)

    Article  Google Scholar 

  7. Baulk, S.D., et al.: Chasing the silver bullet: measuring driver fatigue using simple and complex tasks. Accid. Anal. Prev. 40(1), 396–402 (2008)

    Article  Google Scholar 

  8. Kaida, K., et al.: Validation of the Karolinska sleepiness scale against performance and EEG variables. Clin. Neurophysiol. 117(7), 1574–1581 (2006)

    Article  Google Scholar 

  9. Egelund, N.: Spectral analysis of heart rate variability as an indicator of driver fatigue. Ergonomics 25(7), 663–672 (1982)

    Article  Google Scholar 

  10. Philip, P., et al.: Fatigue, sleep restriction and driving performance. Accid. Anal. Prev. 37, 473–478 (2005)

    Article  Google Scholar 

  11. Jagannath, M., Balasubramanian, V.: Assessment of early onset of driver fatigue using multimodal fatigue measures in a static simulator. Appl. Ergon. 45(4), 1140–1147 (2014)

    Article  Google Scholar 

  12. McCall, J.C., Trivedi, M.M.: Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation. IEEE Trans. Intell. Transp. Syst. 7(1), 20–37 (2014)

    Article  Google Scholar 

  13. Makowiec-Dąbrowska, T., et al.: The work fatigue for drivers of city buses. Medycyna Pracy 66(5), 661–677 (2015). (in Polish)

    Article  Google Scholar 

  14. Mitas, A. et al.: Registration and evaluation of biometric parameters of the driver to improve road safety. Scientific Papers of Transport, Silesian University of Technology, pp. 71–79 (2010) (in Polish)

    Google Scholar 

  15. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, pp. 511–518 (2001)

    Google Scholar 

  16. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  17. Nowosielski, A.: Vision-based solutions for driver assistance. J. Theor. Appl. Comput. Sci. 8(4), 35–44 (2014)

    Google Scholar 

  18. Craye, C., et al.: A multi-modal driver fatigue and distraction assessment system. Int. J. Intell. Transp. Syst. Res. 14(3), 173–194 (2016)

    Google Scholar 

  19. Kong, W., et al.: A system of driving fatigue detection based on machine vision and its application on smart device. J. Sens. 2015, 11 p. (2015). Article ID 548602. doi:10.1155/2015/548602

  20. Jo, J., et al.: Detecting driver drowsiness using feature-level fusion and user-specific classification. Exp. Syst. Appl. 41(4), 1139–1152 (2014)

    Article  Google Scholar 

  21. Zhang, Y., Hua, C.: Driver fatigue recognition based on facial expression analysis using local binary patterns. Optik Int. J. Light Electron Opt. 126(23), 4501–4505 (2015)

    Article  Google Scholar 

  22. Alioua, N., Amine, A., Rziza, M.: Driver’s fatigue detection based on yawning extraction. Int. J. Veh. Technol. 2014, 7 p. (2014). Article ID 678786. doi:10.1155/2014/678786

  23. Fu, R., Wang, H., Zhao, W.: Dynamic driver fatigue detection using hidden Markov model in real driving condition. Exp. Syst. Appl. 63, 397–411 (2016)

    Article  Google Scholar 

  24. Zheng, C., Xiaojuan, B., Yu, W.: Fatigue driving detection based on Haar feature and extreme learning machine. J. China Univ. Posts Telecommun. 23(4), 91–100 (2016)

    Article  Google Scholar 

  25. Azim, T., Jaffar, M.A., Mirza, A.M.: Fully automated real time fatigue detection of drivers through fuzzy expert systems. Appl. Soft Comput. 18, 25–38 (2014)

    Article  Google Scholar 

  26. Jasiński, P., Forczmański, P.: Combined imaging system for taking facial portraits in visible and thermal spectra. In: Proceedings of the International Conference on Image Processing and Communications - IP&C2015, Image Processing and Communications Challenges 7. Advances in Intelligent Systems and Computing, vol. 389, pp. 63–71 (2016)

    Google Scholar 

  27. Hermans-Killam, L.: Cool Cosmos/IPAC website. Infrared Processing and Analysis Center. http://coolcosmos.ipac.caltech.edu/image_galleries/ir_portraits.html. Accessed 10 May 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Małecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Małecki, K., Nowosielski, A., Forczmański, P. (2017). Multispectral Data Acquisition in the Assessment of Driver’s Fatigue. In: Mikulski, J. (eds) Smart Solutions in Today’s Transport. TST 2017. Communications in Computer and Information Science, vol 715. Springer, Cham. https://doi.org/10.1007/978-3-319-66251-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66251-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66250-3

  • Online ISBN: 978-3-319-66251-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics