Abstract
The idea of counting the number of satisfying truth assignments (models) of a formula by adding random parity constraints can be traced back to the seminal work of Valiant and Vazirani, showing that NP is as easy as detecting unique solutions. While theoretically sound, the random parity constraints in that construction have the following drawback: each constraint, on average, involves half of all variables. As a result, the branching factor associated with searching for models that also satisfy the parity constraints quickly gets out of hand. In this work we prove that one can work with much shorter parity constraints and still get rigorous mathematical guarantees, especially when the number of models is large so that many constraints need to be added. Our work is based on the realization that the essential feature for random systems of parity constraints to be useful in probabilistic model counting is that the geometry of their set of solutions resembles an error-correcting code.
D. Achlioptas—Research supported by NSF grant CCF-1514128 and grants from Adobe and Yahoo!
P. Theodoropoulos—Research supported by the Greek State Scholarships Foundation (IKY).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Generating such a matrix can be done by selecting a random permutation of \([\mathtt {l}n]\) and using it to map each of the \(\mathtt {l}n\) non-zeros to equations, \(\mathtt {r}\) non-zeros at a time; when \(\mathtt {l},\mathtt {r}\in O(1)\), the variables in each equation will be distinct with probability \(\varOmega (1)\), so that a handful of trials suffice to generate a matrix as desired.
References
Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-aware sampling and weighted model counting for SAT. In: Brodley, C.E., Stone, P. (eds.) Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec City, Québec, Canada, 27–31 July 2014, pp. 1722–1730. AAAI Press (2014)
Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable and nearly uniform generator of SAT witnesses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 608–623. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_40
Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 200–216. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40627-0_18
Chakraborty, S., Meel, K.S., Vardi, M.Y.: Balancing scalability and uniformity in SAT witness generator. In: The 51st Annual Design Automation Conference 2014, DAC 2014, San Francisco, CA, USA, 1–5 June 2014, pp. 60:1–60:6. ACM (2014)
Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approximate counting for probabilistic inference: from linear to logarithmic SAT calls. In: Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016, pp. 3569–3576. IJCAI/AAAI Press (2016)
Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B.: Taming the curse of dimensionality: discrete integration by hashing and optimization. In: Proceedings of the 30th International Conference on Machine Learning (ICML) (2013)
Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B.: Low-density parity constraints for hashing-based discrete integration. In: Proceedings of the 31st International Conference on Machine Learning (ICML), pp. 271–279 (2014)
Gomes, C.P., Hoffmann, J., Sabharwal, A., Selman, B.: Short XORs for model counting: from theory to practice. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 100–106. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72788-0_13
Gomes, C.P., Sabharwal, A., Selman, B.: Model counting: a new strategy for obtaining good bounds. In: Proceedings of the 21st National Conference on Artificial Intelligence (AAAI), pp. 54–61 (2006)
Gomes, C.P., Sabharwal, A., Selman, B.: Near-uniform sampling of combinatorial spaces using XOR constraints. In: Advances in Neural Information Processing Systems (NIPS) (2006)
Ivrii, A., Malik, S., Meel, K.S., Vardi, M.Y.: On computing minimal independent support and its applications to sampling and counting. Constraints 21(1), 41–58 (2016)
Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University Press, New York (2008)
Sipser, M.: A complexity theoretic approach to randomness. In: Proceedings of the 15th ACM Symposium on Theory of Computing (STOC), pp. 330–335 (1983)
Sipser, M., Spielman, D.A.: Expander codes. IEEE Trans. Inf. Theory 42(6), 1710–1722 (1996)
Soos, M.: Cryptominisat-a sat solver for cryptographic problems (2009). http://www.msoos.org/cryptominisat4
Stockmeyer, L.: On approximation algorithms for #P. SIAM J. Comput. 14(4), 849–861 (1985)
Thurley, M.: sharpSAT – counting models with advanced component caching and implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 424–429. Springer, Heidelberg (2006). doi:10.1007/11814948_38
Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theoret. Comput. Sci. 47, 85–93 (1986)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Achlioptas, D., Theodoropoulos, P. (2017). Probabilistic Model Counting with Short XORs. In: Gaspers, S., Walsh, T. (eds) Theory and Applications of Satisfiability Testing – SAT 2017. SAT 2017. Lecture Notes in Computer Science(), vol 10491. Springer, Cham. https://doi.org/10.1007/978-3-319-66263-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-66263-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66262-6
Online ISBN: 978-3-319-66263-3
eBook Packages: Computer ScienceComputer Science (R0)