Abstract
We provide the first proof complexity results for QBF dependency calculi. By showing that the reflexive resolution path dependency scheme admits exponentially shorter Q-resolution proofs on a known family of instances, we answer a question first posed by Slivovsky and Szeider in 2014 [30]. Further, we conceive a method of QBF solving in which dependency recomputation is utilised as a form of inprocessing. Formalising this notion, we introduce a new calculus in which a dependency scheme is applied dynamically. We demonstrate the further potential of this approach beyond that of the existing static system with an exponential separation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Benedetti, M., Mangassarian, H.: QBF-based formal verification: experience and perspectives. J. Satisfiability Boolean Model. Comput. (JSAT) 5(1–4), 133–191 (2008)
Beyersdorff, O., Blinkhorn, J.: Dependency schemes in QBF calculi: semantics and soundness. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 96–112. Springer, Cham (2016). doi:10.1007/978-3-319-44953-1_7
Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: International Symposium on Theoretical Aspects of Computer Science (STACS). Leibniz International Proceedings in Informatics (LIPIcs), vol. 30, pp. 76–89 (2015)
Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Feasible interpolation for QBF resolution calculi. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 180–192. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47672-7_15
Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Are short proofs narrow? QBF resolution is not simple. In: Symposium on Theoretical Aspects of Computer Science (STACS), pp. 15:1–15:14 (2016)
Beyersdorff, O., Chew, L., Sreenivasaiah, K.: A game characterisation of tree-like Q-resolution size. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 486–498. Springer, Cham (2015). doi:10.1007/978-3-319-15579-1_38
Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–171. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14186-7_14
Buss, S.R.: Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic 163(7), 906–917 (2012)
Cook, S.A., Nguyen, P.: Logical Foundations of Proof Complexity. Cambridge University Press, Cambridge (2010)
Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symbolic Logic 44(1), 36–50 (1979)
Egly, U., Kronegger, M., Lonsing, F., Pfandler, A.: Conformant planning as a case study of incremental QBF solving. In: Artificial Intelligence and Symbolic Computation (AISC 2014), pp. 120–131 (2014)
Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean formulas. In: Handbook of Satisfiability, pp. 761–780. IOS Press (2009)
Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified boolean formulas. J. Artif. Intell. Res. (JAIR) 26, 371–416 (2006)
Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with counterexample guided refinement. J. Artif. Intell. 234, 1–25 (2016)
Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean formulas. Inf. Comput. 117(1), 12–18 (1995)
Kontchakov, R., Pulina, L., Sattler, U., Schneider, T., Selmer, P., Wolter, F., Zakharyaschev, M.: Minimal module extraction from DL-lite ontologies using QBF solvers. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 836–841. AAAI Press (2009)
Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory, Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University Press, Cambridge (1995)
Liang, J.H., Ganesh, V., Zulkoski, E., Zaman, A., Czarnecki, K.: Understanding VSIDS branching heuristics in conflict-driven clause-learning SAT solvers. In: Piterman, N. (ed.) HVC 2015. LNCS, vol. 9434, pp. 225–241. Springer, Cham (2015). doi:10.1007/978-3-319-26287-1_14
Lonsing, F.: Dependency schemes and search-based QBF solving: theory and practice. Ph.D. thesis, Johannes Kepler University (2012)
Lonsing, F., Egly, U., Seidl, M.: Q-resolution with generalized axioms. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 435–452. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_27
Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of Design Automation Conference (DAC), pp. 530–535 (2001)
Peitl, T., Slivovsky, F., Szeider, S.: Long distance Q-resolution with dependency schemes. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 500–518. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_31
Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF. In: National Conference on Artificial Intelligence (AAAI), pp. 1045–1050. AAAI Press (2007)
Samer, M., Szeider, S.: Backdoor sets of quantified boolean formulas. J. Autom. Reasoning 42(1), 77–97 (2009)
Samulowitz, H., Bacchus, F.: Using SAT in QBF. In: Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 578–592. Springer, Heidelberg (2005). doi:10.1007/11564751_43
Shacham, O., Zarpas, E.: Tuning the VSIDS decision heuristic for bounded model checking. In: International Workshop on Microprocessor Test and Verification (MTV), p. 75 (2003)
Silva, J.P.M.: The impact of branching heuristics in propositional satisfiability algorithms. In: Portugese Conference on Progress in Artificial Intelligence (EPIA), pp. 62–74 (1999)
Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: International Conference on Computer-Aided Design (ICCAD), pp. 220–227 (1996)
Slivovsky, F.: Structure in \(\#\)SAT and QBF. Ph.D. thesis, Vienna University of Technology (2015)
Slivovsky, F., Szeider, S.: Variable dependencies and Q-resolution. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 269–284. Springer, Cham (2014). doi:10.1007/978-3-319-09284-3_21
Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes. TCS 612, 83–101 (2016)
Van Gelder, A.: Variable independence and resolution paths for quantified boolean formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7_59
Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability solver. In: International Conference on Computer-aided Design (ICCAD), pp. 442–449 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Blinkhorn, J., Beyersdorff, O. (2017). Shortening QBF Proofs with Dependency Schemes. In: Gaspers, S., Walsh, T. (eds) Theory and Applications of Satisfiability Testing – SAT 2017. SAT 2017. Lecture Notes in Computer Science(), vol 10491. Springer, Cham. https://doi.org/10.1007/978-3-319-66263-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-66263-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66262-6
Online ISBN: 978-3-319-66263-3
eBook Packages: Computer ScienceComputer Science (R0)