UNIVERSITY OF LEEDS

This is a repository copy of Shortening QBF Proofs with Dependency Schemes.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/118501/

Version: Accepted Version

Proceedings Paper:

Blinkhorn, J and Beyersdorff, O orcid.org/0000-0002-2870-1648 (2017) Shortening QBF
Proofs with Dependency Schemes. In: Theory and Applications of Satisfiability Testing —
SAT 2017 (Lecture Notes in Computer Science). International Conference on Theory and
Applications of Satisfiability Testing, 28 Aug - 01 Sep 2017, Melbourne, Australia. Springer
Nature , pp. 263-280. ISBN 978-3-319-66262-6

https://doi.org/10.1007/978-3-319-66263-3 17

© Springer International Publishing AG 2017. This is an author produced version of a
paper published in Theory and Applications of Satisfiability Testing — SAT 2017 (Lecture
Notes in Computer Science). Uploaded in accordance with the publisher's self-archiving
policy. The final publication is available at Springer via
https://doi.org/10.1007/978-3-319-66263-3_17.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

| university consortium eprints@whiterose.ac.uk
WA Universities of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Shortening QBF Proofs with
Dependency Schemes

Joshua Blinkhorn and Olaf Beyersdorff

School of Computing, University of Leeds, UK

Abstract. We provide the first proof complexity results for QBF depen-
dency calculi. By showing that the reflexive resolution path dependency
scheme admits exponentially shorter Q-resolution proofs on a known
family of instances, we answer a question first posed by Slivovsky and
Szeider in 2014 [30]. Further, we conceive a method of QBF solving in
which dependency recomputation is utilised as a form of inprocessing.
Formalising this notion, we introduce a new calculus in which a depen-
dency scheme is applied dynamically. We demonstrate the further po-
tential of this approach beyond that of the existing static system with
an exponential separation.

1 Introduction

Proof complexity is the study of proof size in systems of formal logic. Since its
beginnings the field has enjoyed strong connections to computational complexity
[8,10] and bounded arithmetic [9,17], and has emerged in the past two decades
as the primary means for the comparison of algorithms in automated reasoning.

Recent successes in that area, epitomised by progress in SAT solving, have
motivated broader research into the efficient solution of computationally hard
problems. Amongst them, the logic of quantified Boolean formulas (QBF) is an
established field with a substantial volume of literature. QBF extends propo-
sitional logic with the addition of existential and universal quantification, and
naturally accommodates more succinct encodings of problem instances. This
gives rise to diverse applications in areas including conformant planning [11,24],
verification [1], and ontologies [16].

It is fair to say that much of the early research into QBF solving [13,26,33],
and later the proof complexity of associated theoretical models [4-6], was built
upon existing techniques for SAT. For example, QCDCL [12] is a major paradigm
in QBF solving based on conflict-driven clause learning (CDCL [21]), the dom-
inant paradigm for SAT. By analogy, the fundamental theoretical model of
QCDCL, the calculus Q-resolution (Q-Res [15]), is an extension of propositional
resolution, the calculus that underpins CDCL. Given, however, that the decision
problem for QBF is PSPACE-complete, it is perhaps unsurprising that the im-
plementation of QCDCL presents novel obstacles for the practitioner, beyond
those encountered at the level of propositional logic.

Arguably, the biggest challenge concerns the allowable order of variable as-
signments. In traditional QCDCL, the freedom to assign variables is limited

according to a linear order imposed by the quantifier prefix. Whereas decision
variables must be chosen carefully to ensure sound results, coercing the order of
assignment to respect the prefix is frequently needlessly restrictive [19]. More-
over, limiting the choice adversely affects the impact of decision heuristics. In
contrast, such heuristics play a major role in SAT solving [18,22, 27, 28], where
variables may be assigned in an arbitrary order.

Dependency awareness, as implemented in the solver DepQBF [7], is a QBF-
specific paradigm that attempts to maximise the impact of decision heuristics.
By computing a dependency scheme before the search process begins, the linear
order of the prefix is effectively supplanted by a partial order that better ap-
proximates the variable dependencies of the instance, granting the solver greater
freedom regarding variable assignments. Use of the scheme is static; dependen-
cies are computed only once and do not change during the search. Despite the
additional computational cost incurred, empirical results demonstrate improved
solving on many benchmark instances [19].

Dependency schemes themselves are tractable algorithms that identify de-
pendency information by appeal to the syntactic form of an instance. From the
plethora of schemes that have been proposed in the literature, two have emerged
as principal objects of study. The standard dependency scheme (D**¢ [25]), a
variant of which is used by DepQBF, was originally proposed in the context
of backdoor sets. This scheme uses sequences of clauses connected by common
existential variables to determine a dependency relation between the variables of
an instance. The reflexive resolution path dependency scheme (D' [31]) utilises
the notion of a resolution path, a more refined type of connection introduced
in [32].

A solid theoretical model for dependency awareness was only recently pro-
posed in the shape of the calculus Q(D)-Res [31], a parametrisation of Q-resolution
by the dependency scheme D. Whereas the body of work on Q(D)-Res and re-
lated systems has focused on soundness [2,23,31], authors of all three papers
have cited open problems in proof complexity. Indeed, prior to this paper there
were no proof-theoretic results to support any claims concerning the potential
of dependency schemes in the practice of QBF solving.

In this work, not only do we provide the first such results, we also demonstrate
the potential of dependency schemes to further reduce the size of proofs if they
are applied dynamically. We summarise our contributions below.

1. The first separations for QBF dependency calculi. We use the well-
known formulas of Kleine Biining et al. [15] to prove the first exponential sep-
aration for Q(D)-Res. We show that D™ can identify crucial independencies in
these formulas, leading to short proofs in the system Q(D™¢)-Res. In contrast,
we show that D' cannot identify any non-trivial independencies, allowing us
to lift the exponential lower bound for Q-Res [3,15] to Q(D%¢)-Res. Our result
proves conclusively for the first time that the use of a dependency scheme can
significantly (i.e. exponentially) reduce the running time of a QBF solver.

2. A model of dynamic dependency analysis. We propose the new calculus
dyn-Q(D)-Res that models the dynamic application of a dependency scheme in
Q-resolution. The system employs a so-called ‘reference rule’ that allows new
axioms, called reference clauses, to be introduced into the proof. The key insight
is that the application of an assignment to an instance formula may allow the
dependency scheme to unlock new independencies. As such, the reference rule
alludes to an explicit refutation of the formula under an appropriate restriction,
and is analogous to the recomputation of dependencies at an arbitrary point
of the QCDCL procedure. We prove that dyn-Q(D)-Res is sound whenever the
dependency scheme D is fully exhibited.

3. Exponential separation of static and dynamic systems. Our final con-
tribution demonstrates that the dynamic application of dependency schemes can
shorten Q-resolution proofs even further, yielding an exponential improvement
even over the static approach. Using a modification of the aforementioned for-
mulas from [15], we prove that dyn-Q(D"*)-Res is exponentially stronger than
Q(D'*)-Res.

2 Preliminaries

Quantified Boolean formulas. In this paper, we consider quantified Boolean
formulas (QBFs) in prenex conjunctive normal form (PCNF), typically denoted
® = 9Q.¢. A PCNF over Boolean variables zi,...,z, consists of a quantifier
prefict @ = Q21+ Qnzn, Qi € {3,V} for i € [n], in which all variables are quan-
tified either existentially or universally, and a propositional conjunctive normal
form (CNF) formula ¢ called the matriz. The prefix Q imposes a linear ordering
<g on the variables of @, such that z; <¢ z; holds whenever 7 < j, in which case
we say that z; is right of z;.

A literal is a variable or its negation, a clause is a disjunction of literals, and
a CNF is a conjunction of clauses. Throughout, we refer to a clause as a set of
literals and to a CNF as a set of clauses. We typically write = for existential
variables, u for universals, and z for either. For a literal I, we write var(l) = z
iff | = z or [= =z, for a clause C we write vars(C') = {var(l) | [€ C}, and for a
PCNF & we write vars(®) for the variables in the prefix of .

A (partial) assignment § to the variables of @ is represented as a set of
literals, typically denoted {li,...,lx}, where literal z (resp. —z) represents the
assignment z — 1 (resp. z — 0). The restriction of & by 6, denoted P[0], is
obtained by removing from ¢ any clause containing a literal in §, and removing
the negated literals —ly, . .., =) from the remaining clauses, while the variables of
¢ and their associated quantifiers are removed from the prefix Q. For assignments
to single variables we may omit the braces; for example, we write @[I] for @[{l}].

QBF resolution. Resolution is a well-studied refutational proof system for
propositional CNF formulas with a single inference rule: the resolvent Cy U Cs

may be derived from clauses Cy U {a} and Cy U {—z} (variable z is the pivot).
Resolution is refutationally sound and complete: that is, the empty clause can
be derived from a CNF iff it is unsatisfiable.

There exist a host of resolution-based QBF proof systems — see [3] for a
detailed account. Q-resolution (Q-Res) introduced in [15] is the standard refu-
tational calculus for PCNF. In addition to resolution over existential pivots, the
calculus has a universal reduction rule which allows a clause C' to be derived
from C U {l}, provided var(l) is a universal variable right of all existentials in
C. Tautologies are explicitly forbidden; one may not derive a clause containing
both z and —z.

For a QBF resolution system P, a P derivation of a clause C from a PCNF @
is a sequence C4, ...,), of clauses in which C' = C,,,, and each clause is either
an axiom or is derived from previous clauses in the sequence using an inference
rule. A refutation of @ is a derivation of the empty clause from .

A proof system P p-simulates a system Q (denoted Q <, P) if each Q-proof
can be transformed in polynomial time into a P-proof of the same formula [10].
The systems P and Q are p-equivalent (denoted P =, Q) if P <, Q and Q <, P.

QBF models. Let & = Q121 -+ Q,2, . ¢ be a PCNF over existential variables
V3 and universal variables V5. A model f for & is a mapping from total assign-
ments to Vi to total assignments to V3 that satisfies two conditions: (a) whenever
a and o agree on all universals left of a variable z;, then f(«) and f(a') agree
on all existential variables left of (and including) z;; (b) for each « in the domain
of f, aU f(«) satisfies every clause C € ¢ (that is, CN(aU f(«)) # 0). A PCNF
is true iff it has a model, otherwise it is false.

Following [26], a model can be depicted naturally as a tree, as shown in
Figure 1. For each « in the domain of f, the literals of the set o U f(a) are
written in prefix order on a unique path from the root of the tree to some leaf.
As such, a model can be uniquely identified with a set of 2!Y%| paths, each of
which is one of the sets a U f(a). This is a convenient interpretation (cf. [2]),
and we adopt this approach for all technicalities concerning QBF models.

3 Static dependency awareness in Q-resolution

In this section, we provide the necessary background for dependency schemes and
their incorporation into Q-resolution. We recall the definitions of the standard
[25] and reflexive resolution path [31] dependency schemes, and the definition of
the dependency calculus Q(D)-Res.

3.1 Overview of dependency schemes

For the duration of this work, we deal only with the (in)dependence of existential
variables on universal variables'. This is a convenience afforded by the fact that

! In practice, the dual notion of (in)dependence of universals on existentials is equally
important.

X1

/ \ WZ/ \
() (] (0w () () (] (o) (]

Fig. 1. Tree depiction of a model for the PCNF with prefix Yui3dziVus3x2Vus and
clauses {u1, —x1}, {-u1,z1} and {—~u1, —ug, x2, ~us}.

we deal with refutational calculi, in which the (in)dependence of universals on
existentials does not feature. We therefore take the opportunity to work with
tighter (and in some cases considerably simpler) definitions than those referenced
in the literature.

A dependency scheme is presented as a function mapping PCNFs to binary
relations. The binary relations represent variable dependencies. For an arbitrary
PCNF @, the trivial dependency relation captures the linear order of the quanti-
fier prefix of @, and is given by D"V(®) = {(u, x) € varsy(®)xvars3(P) | u <g z}.
Formally, a dependency scheme D is a mapping from the set of all PCNF's that
satisfies D(®) C D"V (P) for each PCNF @. The existence of a pair (u,x) € D(P)
should be interpreted as ‘existential xz depends on universal u in @ accord-
ing to dependency scheme D’. We say that D’ is at least as general as D iff
D'(9) C D(P) for each PCNF @, and is strictly more general if the inclusion is
strict for some PCNF.

All non-trivial dependency schemes that have appeared in the literature to
date are based in some way or another on connections between clauses in the
matrix. In the standard dependency scheme D**9, an existential = depends on
a universal v whenever a clause containing variable x is connected to a clause
containing variable u, whereby clauses are connected iff they share a common
existential variable that is right of u. The absence of such a connection ensures
that z is independent of u according to DS,

Definition 1 (standard dependency scheme [25]). Let & = Q.¢ be a
PCNF. The pair (u,x) € D" (®) is in D*Y(P) iff there exists a sequence of
clauses Cy,...,Cy, € ¢ with u € vars(Cy), = € vars(C,), such that, for each
i € [n— 1], vars(C;) Nvars(C;41) contains an existential variable right of .

Whereas connections in D**¢ are based on common variables, the reflexive reso-
lution path dependency scheme D™ improves upon D**¢ by taking polarity into
account. The connecting existential variable must appear in opposite polarities
in the connected clauses, yielding a strictly more general scheme. As explained
above, we present a simplified formulation of D™ tailored to the current work.

Axiom rule: axiom(¢)

ol C is a clause in the matrix ¢.

Reduction rule: red(C, 1)

— literal [is universal.

N S — (var(l),z) ¢ D(®) holds for each
o\l existential variable z in vars(C).

Resolution rule: res(Cy, Ca, z)

— variable x is existential.
— z € (C and ~x € Cs.
— the resolvent is non-tautological.

Ch Cy
(CrU)\ {z, ~z}

Fig. 2. The rules of Q(D)-Res [31]. D is a dependency scheme and ¢ = Q. ¢ is a PCNF.

Definition 2 (reflexive resolution path dependency scheme [31]). Let
& = Q.¢ be a PCNF, and let (u,z) € D"V (P). Then (u,x) € D"(P) iff there
is a sequence of clauses Cy,...,C, € ¢ and a sequence of existential literals
l1,. .y ln_1 for which the following four conditions hold:

(a) uweCy and ~u € Cy,

(b) x =var(l;), for some i € [n—1],

(c) u<g var(ly), l; € C; and —l; € Ciyq, for each i € [n — 1],
(d) var(l;) # var(li+1) for each i € [n — 2].

3.2 Dependency schemes in Q-resolution

The theoretical model for the use of dependency schemes in dependency-aware
solving is captured by the calculus Q(D)-Res, introduced in [31]. The main idea
is to generalise Q-Res by replacing the implicit reference to the trivial depen-
dency scheme with an explicit reference to a strictly more general scheme. Note
that Q-Res allows a universal variable u to be reduced only if it is right of all
existentials in the clause, or, equivalently, whenever all existentials in the clause
are trivially independent of u. By contrast, in Q(D)-Res u can be reduced when-
ever all existentials in the clause are D-independent of u. We recall the rules of
Q(D)-Res in Fig. 2.

Soundness of the calculus Q(D)-Res is not guaranteed, and hinges on the
choice of the dependency scheme D. Previous work has shown that the concept
of full exhibition?, which imposes a natural condition on D, is sufficient to prove

2 The term “full exhibition’ was coined in [2]. The concept itself and the term ‘D-model’
originate from [29].

soundness in Q(D)-Res [29], and indeed in stronger dependency calculi for QBF
[2]. Following [2], we say that a model f exhibits the independence of x on w iff,
for each « in the domain of f, the assignment to x in f(«) remains unchanged
when the assignment to u in « is flipped.

Definition 3 (full exhibition [2,29]). A model f for a PCNF & is a D-model
iff, for each (u,x) € D™ (P)\ D(P), f exhibits the independence of x on u. A
dependency scheme D is fully exhibited iff each true PCNF has a D-model.

Informally, full exhibition ensures that a true PCNF has a particular model in
which existentials do not depend on the universals from which they are indepen-
dent according to the dependency scheme. As in [29], we refer to such a model
as a D-model. In Section 5, we show that full exhibition remains sufficient for
soundness when a dependency scheme is applied dynamically, as opposed to the
static application offered in Q(D)-Res.

It should be clear that Q(D)-Res is simulated by Q(D’)-Res whenever D’ is
at least as general as D. We conclude this section by noting the following trivial
simulations for Q(D)-Res.

Proposition 4. Q-Res =, Q(D™)-Res <, Q(Dst)-Res <p Q(D"™)-Res.

4 Exponential separation of Q(D*!)-Res and Q(D™)-Res

In this section, we prove that Q(D™)-Res is exponentially stronger than Q(Ds*)-
Res. Given that Q(D**Y)-Res p-simulates Q-Res (Prop. 4), we thereby separate
Q(D*)-Res and Q-Res, thus answering the question initially posed by Slivovsky
and Szeider in [30].

The separating formulas are a well-studied family of PCNFs, originally in-
troduced in [15]. We recall the definition of this formula family, which is referred
to as ¥(n) throughout this paper.

Definition 5 (formulas of Kleine Biining et al. [15]). The formula family
U(n) := Q(n).¢¥(n) has prefizes Q(n) = Jx1Iy1Vuy - - - I, JynVu, Ity - - - Ity
and matrices ¥(n) consisting of the clauses

A= {_‘9317_‘3-/1}7

Bi = {s,wi, ~Tiy1, Yirr} Bi = {yi, "wi, ~xig1, s} i€ [n—1],
B, = {mnau'ru ATEEED "tn} B;L = {yn7 Uy, Ty, "tn}>

C; = {ui,ti} Cll = {_\’U,i,ti} xS [’I’L]

We first show that the standard dependency scheme cannot identify any
non-trivial independencies for ¥ (n).

Proposition 6. For each n € N, D**4(¥(n)) = D"V (¥ (n)).

Proof. Let n € N and let 4,5 € [n].
For (u;,t;) € D™V(¥(n)), consider the sequence of clauses B;, ..., By, and
observe that w; € vars(B;) and t; € vars(B,). For each k € [i,n — 1], the

existential variable xy41, which is right of w;, is in the set vars(By,) Nvars(By1).
Therefore (u;,t;) € DS(¥(n)).

For each (u;, z;) € D™ (¥(n)) with i < j, the fact that (u;, z;) € D (¥ (n))
is shown similarly, using the sequence of clauses B;, ..., B;. For the final case
(ui,yj) € D™ (¥(n)) take the sequence By, ..., B. O

The salient consequence of Prop. 6 is that every application of V-reduction
in a Q(D*¢)-Res derivation from ¥ (n) is also available in Q-Res. As a result, the
Q-Res lower bound for ¥(n) lifts directly to Q(D**¢)-Res.

Theorem 7. The QBFs W(n) require exponential-size Q(D**Y)-Res refutations.

Proof. 1t is known that ¥ (n) require exponential-size Q-Res refutations [3,15]. By
Prop. 6, any Q(D*¢)-Res refutation of ¥(n) is a Q(D')-Res refutation of ¥(n).
The result follows since Q-Res and Q(D™)-Res are p-equivalent, by Prop. 4. O

In contrast, the more general dependency scheme D™ can identify some
crucial non-trivial independencies in ¥ (n).

Proposition 8. For each n € N and for each i,j € [n], if i # j then (u;,t;) ¢
D& (n)).

Proof. Let n € N and let i, € [n] with ¢ # j. Suppose that Dy, ..., Dy € ¥(n)
and ly,...,lp—1 are sequences of clauses and literals respectively, satisfying the
four conditions of Definition 2 with respect to the pair (u;,t;) € D™V (¥(n)). By
condition (b), the literal sequence contains a literal in the variable ¢;. Observe
that, in the matrix 1 (n), the positive literal ¢; occurs only in the clauses C; =
{uj,t;} and C% = {-uy,t;}. Hence, by condition (c), there is some clause D in
the clause sequence such that D = Cj or D = C’]{. Since t; is the only existential
literal in D, the clause must be an endpoint of the sequence by condition (d),
and hence we must have D = Dy or D = Dy,. However, since ¢ # j, this implies
that either u; ¢ Dy or u; ¢ Dy, contradicting condition (a). O

According to Prop. 8, a Q(D"*)-Res refutation of ¥(n) may contain V-reduction
steps that are disallowed in Q-Res. For example, under D™ it is possible to
remove literal u, from the clause {x,, uy, -t1,..., 7t,—1}. As we demonstrate in
the proof of the following theorem, it is precisely this step (which is unavailable in
Q-Res due to the presence of existentials right of u) that permits the construction
of O(n)-size Q(D"*)-Res refutations.

Theorem 9. The formulas ¥(n) have linear-size Q(D"*)-Res refutations.

Proof. A portion of a linear-size Q(D"®)-Res refutation of ¥(n) is shown in Fig. 3.
The clauses {@y—1,Upn—1,t1, ..., "tn_1} and {yp—1, "Up_1,t1,..., " t,_1} are
derived in a constant number of steps, and the task is reduced to the refutation
of (n — 1). The complete refutation is therefore linear in size.

According to Prop. 8, in a Q(D"*)-Res derivation from ¥(n) the variable u;
may be removed from a clause D provided that the existential variables in D
that are right of u; are contained in the set {t1,...,t,} \ {¢:}. Such V-reduction
steps, which would be disallowed in Q-Res, are marked with an asterisk (x) in
Fig. 3. O

({wntn}) ({znun,=t1, =t}) ({yn, i, =1, =ta}) ({otun, ta})

[{xn,un,ﬁtl, - .,ﬁtn_l}] [{yn,ﬁun,ﬁtl, - .,ﬁtn_l}]

* *
[{In—h Un—1, Tn, “yn}] [{yn—h Un—1, Tn, “yn}]

[{1‘7“ —\tl, ey —\tn71}] [{yn, —|t1, ey —‘tn71}]

[{In—h Un—1, Yn, "th R "tn—l}] [{yn—h TUn—1, Tn, "tly R “tn—l}]

[{xn—la Un—1, ﬂtl, ey _‘tn—l}] [{yn—la Un-—1, _‘t1, ey _‘tn—l}]

Fig. 3. Portion of a linear size Q(D"*)-Res refutation of ¥(n). The V-reduction steps
marked with * are forbidden in Q-Res, but are allowed in Q(D"®)-Res due to Prop. 8.

The following result is an immediate consequence of Theorems 7 and 9.

Theorem 10. Q(D"*)-Res is exponentially stronger than Q(D**)-Res.

5 Modelling dynamic dependency awareness

In this section, we introduce the dynamic dependency calculus dyn-Q(D)-Res
and prove that it is sound for a fully exhibited scheme D.

5.1 Dynamic dependencies in Q-resolution

We first define a particular kind of assignment to the variables of a PNCF that,
in a clear sense, ‘respects’ the dependency scheme D.

Definition 11 (D-assignment). Let D be a dependency scheme and let ¢ be
a partial assignment to the variables of a PCNF ®. Then ¢ is a D-assignment
for @ iff, whenever § assigns an existential literal I, then § assigns all universal
variables in the set {u | (u,var(l)) € D(P)}.

We also define the largest falsified clause of an assignment.

Definition 12 (largest falsified clause). Let § = [y,...,l; be an assignment.
The largest falsified clause of 0 is {-ly,..., "y}

Definition of the calculus. We define dyn-Q(D)-Res as the proof system that has
the rules of Q(D)-Res in addition to the reference rule shown in Fig. 4. On an
intuitive level, the reference rule is based on the following fact: Given a PCNF
@ and a fully exhibited dependency scheme D, if @ is false under restriction by

Reference rule: ref(§,)

— 0 is a D-assignment for &.
— — 7 is a dyn-Q(D)-Res refutation of P[4]
— C is the largest falsified clause of §.

Fig. 4. The reference rule of dyn-Q(D)-Res. D is a dependency scheme and & = Q. ¢
is a PCNF.

a D-assignment ¢, then adding the largest falsified clause of § to the matrix of @
preserves satisfiability® (note that this does not hold for an arbitrary assignment
0). Therefore, if the calculus is capable of refuting ®[d], it should be able to
introduce the largest falsified clause of §.

We refer to a clause derived by application of the reference rule as a reference
clause. As stated in the rule itself, a reference clause may only be introduced
if an explicit refutation 7 of @[] can be given. This feature allows the size of
a dyn-Q(D)-Res derivation to be suitably defined. We refer to m as a referenced
refutation.

The power of the reference rule lies in the fact that the dependency scheme
D may identify (or unlock) new non-trivial independencies in the restricted for-
mula, meaning that it may be easier to refute the restricted formula $[d] than
to derive the reference clause from @ directly. We note that the referenced refu-
tation 7, being a derivation from @[d], can make use of these newly unlocked
independencies. In this way, the calculus models the recomputation of depen-
dencies during the QCDCL search procedure. We elaborate on this point in
Subsection 5.3.

Reference degree. The reference degree of a dyn-Q(D)-Res derivation is 0 iff it
does not contain any reference clauses (i.e. it is a Q(D)-Res derivation). For all
other derivations 7, the reference degree is d+ 1, where d is the largest reference
degree of a refutation referenced from 7.

Proof size. The size of a dyn-Q(D)-Res derivation 7 of reference degree 0 is the
number of clauses in the proof. The size of a derivation 7 with non-zero reference
degree is a + b, where a is the number of clauses in 7 and b is the sum of the
sizes of refutations referenced from 7.

5.2 Soundness of dyn-Q(D)-Res

The task of proving that dyn-Q(D)-Res is sound for a fully exhibited dependency
scheme D (Theorem 15) can essentially be reduced to proving that the reference
clauses derived from a true PCNF are satisfied by a D-model (Lemma 14).

3 We prove this statement formally in Subsection 5.2 (Lemma 14).

10

In what follows, we find it convenient to introduce a notion of restriction for
models. Let f be a model for a PCNF &, and let I be a literal with var(l) €
vars(®). If [is universal, then f[l] is obtained from f by removing all paths
containing —/ and removing [from all remaining paths. If [is existential, then
f[l] is obtained from f by removing all occurrences of I and -l from the paths
of f.

It should be clear that f[I] is a model for @[I] if [is universal. The same is
also true for an existential literal [provided that it is unopposed in f, by which
we mean that its negation = does not appear in any path in f. These facts are
useful enough in the sequel to be the subject of the following proposition.

Proposition 13. Let @ be a PCNF, let f be a model for @ and let | be a literal
with var(l) € vars(®). Then f[l] is a model for @[] if either (a) l is universal,
or (b) 1 is existential and unopposed in f.

We extend the restriction of a model to an arbitrary assignment 6 = {ly,...,lx}
in the natural way; that is, f[d] is the result of the successive restriction of f by
the literals in 4. It should be clear that the order of successive restrictions does
not matter.

We proceed to prove that a D-model of a PCNF @ satisfies any reference
clause derivable from it in dyn-Q(D)-Res.

Lemma 14. Let D be a dependency scheme, let f be a D-model for a PCNF @,
and let § be a D-assignment for ®. If 4] is false, then f satisfies the largest
falsified clause of 6.

Proof. Let & = Q. ¢, and let C be the largest falsified clause of §. We prove the
contrapositive statement: if f does not satisfy C, then @[d] is true.

The idea of the proof is to restrict f by d, obtaining a model for @[4]. The
simplest way to do this is to restrict first by the universal subassignment of
0, and then by the existential subassignment. To that end, let oy := {l € 0 |
var(l) is universal} and define 03 similarly.

By successive application of Proposition 13 (a), it follows that f[dy] is a model
for @[dy]. We claim that every literal in 5 is unopposed in f[dy]. We will therefore
prove the result since, by successive application of Proposition 13 (b), it follows
that (f[dv])[03] = f[d] is a model for (P[dy])[d5] = P[I].

It remains to prove that the literals in 03 are indeed unopposed in f[dy].
Suppose that f falsifies C'. Then there is some path P in f that contains none of
the literals in C. Since P contains a literal for every variable, it must therefore
contain the negation of every literal in C. It follows, by definition of largest
falsified clause (Def. 12), that § C P. Then, by definition of model restriction,
there is some path P’ = P\ éy in f[dy] with d5 C P’. The result follows since
each existential variable in vars(d3) appears in f[dy] in a single polarity. To see
this, let « € vars(d3), and note that {u | (u,z) € D(P)} C vars(dy), since J is
a D-assignment. Hence, f[0y] exhibits the independence of x on all remaining
universals, and z therefore occurs in a single polarity. ad

11

To prove that dyn-Q(D)-Res is sound, we must prove that one cannot derive
the empty clause from any true PCNF. The proof is obtained by the addition of
Lemma 14 to the literature’s existing proof of soundness for Q(D)-Res.

Theorem 15. The dynamic dependency calculus dyn-Q(D)-Res is sound if D is
fully exhibited.

Proof. In [29] it is shown that Q(D)-Res is sound if D is fully exhibited. The
result may be proved by induction on derivation depth in the following way
(for a detailed proof cf. [2]): Let D be a fully exhibited dependency scheme, let
@ := Q. ¢ be a true PCNF and assume 7 is a Q(D)-Res refutation of @. Since D
is fully exhibited, there exists a fully exhibiting model f for ¢ (with respect to D)
that satisfies every matrix clause. Moreover, if f satisfies the antecedent clauses
of any application of resolution or reduction, then f satisfies the consequent
clause. We therefore reach a contradiction, since f satisfies the conclusion of m,
the empty clause.

Now, if we instead let = be a dyn-Q(D)-Res refutation, the above method
can be lifted provided that the fully exhibiting model f satisfies every clause
introduced by application of the reference rule. In this way, we prove soundness
by induction on the reference degree d of .

The base case d = 0 is already established [29], since any dyn-Q(D)-Res
refutation of degree 0 is a Q(D)-Res refutation. For the inductive step, let d > 1,
and suppose that all dyn-Q(D)-Res refutations of reference degree less than d are
sound. Further, let C' be the first reference clause of 7, introduced by application
of ref(d,7’). Since 7’ is a dyn-Q(D)-Res refutation of @[d] of reference degree at
most d—1, @[0] is false by the inductive hypothesis. Since C'is the largest falsified
clause of 9, it is therefore satisfied by f, by Lemma 14. Successive application of
the argument demonstrates that f satisfies every reference clause in 7. a

As it is known that D™ is fully exhibited [2], the fact that dyn-Q(D"*)-Res
is sound is a corollary to Theorem 15. Since D™ is strictly more general than
D every dyn-Q(D*9)-Res refutation is a dyn-Q(D™™)-Res refutation, hence
dyn-Q(Ds*)-Res is also sound.

Corollary 16. The calculi dyn-Q(D**9)-Res and dyn-Q(D"™)-Res are both sound.

5.3 Motivations for dyn-Q(D)-Res

We chose to define a D-assignment in order to replicate the kind of assignment
that is maintained by a QCDCL solver using a dependency scheme, whereby
decision variables are assigned only after all others on which they depend. In
line with our discussion in Section 3, we can relax the theoretical model so that
only the (in)dependence of existentials on universals is considered, and hence
universals may be assigned arbitrarily in a D-assignment.

The motivation for dyn-Q(D)-Res is this observation: If, by recomputing de-
pendencies, the solver is able to refute the formula under its current assignment
6§, it should be able to learn the largest falsified clause of é. In this way, the

12

system shares similarities with ‘Q-resolution with generalised axioms’ [20]. Re-
garding proof complexity, a drawback of that calculus is that every false formula
may be refuted in a single step. Our system resolves this difficulty, using the
notion of referencing to accommodate a suitable definition of proof size.

In line with [20], we could have allowed assignments due to unit propagation
and pure literal elimination in dyn-Q(D)-Res. This would allow additional ex-
istential literals to be included in a D-assignment provided that they are valid
assignments under Boolean constraint propagation. Doing so would result in a
stronger version of dyn-Q(D)-Res, since such a modification extends the set of D-
assignments for any instance. However, we prefer to the present simpler system,
since propagation is not necessary for the separation in the following section.

Soundness of the system with propagation can be proved by an extension
of our argument in Lemma 14. This is because existential literals that become
unit under restriction are always unopposed in the restricted model, and hence
Proposition 13 still applies. Existential literals that become pure can be assigned
unopposed throughout the restricted model without falsifying any clauses.

6 Static vs dynamic dependency awareness in Q(D)-Res

In this section, we investigate the relative proof complexities of Q(D)-Res and
dyn-Q(D)-Res. We prove an exponential separation when D is the reflexive res-
olution path dependency scheme. In contrast, the two systems are p-equivalent
when D is the trivial dependency scheme.

The latter result, while a perfectly natural conjecture, requires a non-trivial
proof.

Theorem 17. Q-Res and dyn-Q(D'")-Res are p-equivalent proof systems.

Proof (sketch). Since dyn-Q(D™)-Res trivially p-simulates Q-Res (Prop. 4), we
need only prove the reverse simulation. We prove by induction on reference
degree that any dyn-Q(D')-Res derivation can be transformed into a Q-Res
derivation of the same size, in time linear in the size of the original derivation.
To that end, let m be a dyn-Q(D™)-Res derivation of a clause C' from a PCNF
@ of reference degree d.

If d = 0, then 7 is a Q-Res derivation, so the base case is established trivially.
For the inductive step, let d > 1, and let R be a reference clause in 7 derived
by application of rule ref(d, 7'). Note that the reference degree of 7’ is less than
d, and hence, by the inductive hypothesis, 7’ can be transformed in linear time
into a Q-Res refutation p of @[§] with |p| = |7’|. A D' -assignment assigns
variables strictly in block order and assigns no variable before the preceding
block is fully assigned. As a result, adding the literals in R to each clause of
p cannot invalidate any V-reduction step, nor introduce a universal tautology.
Moreover, doing so transforms p in linear time into a Q-Res derivation p’ of R,
with [p'| = |p|. Since every axiom clause in p’ is subsumed by some clause in
the matrix of @, p’ can be transformed into a derivation of R from @ simply
by omitting any steps that are rendered unnecessary by the absence of a literal.

13

This last transformation can clearly be carried out in linear time and does not
increase the size of the derivation.

Successive application of this method to all the reference clauses in 7 yields
a Q-Res derivation of C' of size at most |r|. The complete transformation can be
carried out in time linear in || ad

The remainder of this section is devoted to the separation of dyn-Q(D"*)-Res
from Q(D'¢)-Res. The separating formulas are a modification of ¥(n), for which
we make use of the following operation.

Definition 18 (clause-matrix product). Let C' be a clause and let ¢ be a
CNF matriz. The clause-matriz product C ® ¢ is the CNF matriz with clauses
{cucC"|C" € ¢}.

We modify ¥(n) by adding two fresh existential variables a and b, quantified
at the very beginning and very end of the prefix, respectively. Taking two copies
of the matrix ¢(n), to each clause of the first copy we add literals a and b, and to
each clause of the second we add literals —a and —b. Finally, we add the clauses
{a,—b} and {—a, b} so that the modified formulas are false.

Definition 19 (modification of the formulas of Kleine Biining et al.).
Let ¥(n) := Q(n) . ¥ (n) be the formulas of Kleine Biining et al. (as in Def. 5).
We define the formula family

Z(n) :=3aQ(n)3b . ({a,b} @ ¥(n)) U ({-a, ~b} @ P(n)) U {{a, ~b}, {-a, b}}.

The purpose of variable b is to introduce sufficiently many D™ connections
between clauses, such that D™ can no longer identify any non-trivial indepen-
dencies. This means that static application of D™ cannot improve upon Q-Res.
However, under either assignment to variable a, one copy of the matrix ¢(n)
vanishes, and the connections due to b disappear with it. As a result, the re-
stricted formulas =(n)[a] and =(n)[—a] are sufficiently similar to ¥(n) to admit
short Q(D"¢)-Res refutations. Hence, dynamic application of D™* yields shorter
proofs.

To prove the lower bound for the static calculus, we first show that D'*(=(n))
= D'"V(Z(n)), from which it follows that any Q(D"s)-Res refutation of =(n) is
also a Q-Res refutation. We then show that any Q-Res refutation of Z(n) contains
an embedded refutation of ¥(n), which has size at least 2™ [3,15].

Theorem 20. The QBFs =(n) require exponential-size Q(D'®)-Res refutations.

Proof. To see that D™ does not identify any spurious existential dependencies
for Z(n) — or, equivalently, that D™5(Z(n)) = D"V(Z(n)) — we must show that,
for each pair (v,z) € D" (E(n)), there exists a sequence of k clauses and a
sequence of k — 1 literals satisfying the four conditions of Def. 2.

Let i,j € [n]. For (u;,b) € D"V(Z(n)), the clauses {a,b} U B;, {—a, b} U
B! and the single literal b form suitable sequences. For (u;,t;) € D"V (Z(n)),
the clauses {a,b} U B;,{—a,-b} U Cj,{a,b} U B,,{—a,~b} U B; and the lit-
erals b,t;,b are suitable. For (u;,xz;) € D" (Z(n)) (with i < j), the clauses

14

{a,b} U B;,{—-a,-b} U B;,{a,b} U{B;_1},{—a, b} U B} and the literals b, z;,b
are suitable, and the case for (u;,y;) € D"V(=Z(n)) is similar.

Now, let m be a Q(D"*)-Res refutation of =(n), and let « be the assignment
{—a, —b}. Since « assigns only existential variables, 7[a] is a refutation of = (n)[«]
that is no larger than . Observe that =(n)[a] = ¥(n), hence the size of 7[a] is
at least 2™ [3,15], and we must have || > 2™. O

The upper bound argument makes use of the construction of short refutations
from the proof of Theorem 9. By referencing those refutations, dyn-Q(D"*)-Res
admits simple O(n)-size refutations of =(n).

Theorem 21. The formulas Z(n) have linear-size dyn-Q(D"®)-Res refutations.

Proof. We construct linear-size Q(D"*)-Res refutations of ='(n)[—a] and =(n)[al.
Since a and —a are D'®-assignments for =(n), in dyn-Q(D"*)-Res one can intro-
duce the unit clauses {a} and {—a} by application of the reference rule, from
which the empty clause is derived by a single resolution step. As the two refer-
enced refutations are of linear size, so is the complete refutation.

It remains to construct the referenced refutations of =(n)[—a] and Z(n)|al.
We describe the case for Z(n)[—a] — the other case is similar.

Note that the formula =(n)[—a] may be obtained from ¥(n) by adding the
literal b to every clause, and then adding the unit clause {—b} to the matrix.
We make two observations. First, since the negative literal —b occurs only in a
unit clause, such a modification of ¥(n) cannot introduce any new existential
Ds dependencies; no D™ path can go through variable b. As a result, Prop. 8
lifts from ¥ (n) to =(n)[-al; that is, (u;,t;) ¢ D™(Z(n)[—al) for each i,j € [n]
with i # j. Second, ¥(n) can be derived in O(n) resolution steps from = (n)[—a]
simply by resolving the unit clause {—b} with every other clause (there are O(n)
clauses in =(n)[—al). It follows that Q(D'")-Res can refute =(n)[—a] in O(n)
steps by first deriving the clauses of ¥(n) and then replicating the refutation
given in the proof of Theorem 9. a

Our final result is immediate from Theorems 20 and 21.
Theorem 22. dyn-Q(D"*)-Res is exponentially stronger than Q(D"*)-Res.

7 Conclusions

We demonstrated that the use of dependency schemes in Q-resolution can yield
exponentially shorter proofs. In line with experimental results, we thereby pro-
vided strong theoretical evidence supporting the notion that dependency schemes
can be utilised for improved QBF solving. With further proof-theoretical results,
we also demonstrated that the dynamic use of schemes has further potential for
improved solving, beyond that of the static approach in existing implementa-
tions.

Finally, we suggest strongly that the results in this paper will lift to further
QBF calculi, and most notably to expansion-based systems. We therefore high-
light the potential for dependency schemes in expansion solving, and endorse
the move in this direction mooted at the end of [14].

15

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and
perspectives. Journal on Satisfiability, Boolean Modeling and Computation (JSAT)
5(1-4), 133-191 (2008)

. Beyersdorff, O., Blinkhorn, J.: Dependency schemes in QBF calculi: Semantics

and soundness. In: Principles and Practice of Constraint Programming (CP). pp.
96-112 (2016)

Beyersdortf, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF
calculi. In: International Symposium on Theoretical Aspects of Computer Science
(STACS). Leibniz International Proceedings in Informatics (LIPIcs), vol. 30, pp.
76-89 (2015)

Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Feasible interpolation for
QBF resolution calculi. In: International Colloquium on Automata, Languages,
and Programming (ICALP). pp. 180-192 (2015)

Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Are short proofs narrow?
QBF resolution is not simple. In: Symposium on Theoretical Aspects of Computer
Science (STACS). pp. 15:1-15:14 (2016)

Beyersdorff, O., Chew, L., Sreenivasaiah, K.: A game characterisation of tree-like
Q-resolution size. In: LATA. pp. 486-498. Springer (2015)

Biere, A., Lonsing, F.: Integrating dependency schemes in search-based QBF
solvers. In: International Conference on Theory and Applications of Satisfiability
Testing (SAT). pp. 158-171. Springer (2010)

Buss, S.R.: Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic
163(7), 906-917 (2012)

Cook, S.A., Nguyen, P.: Logical Foundations of Proof Complexity. Cambridge Uni-
versity Press (2010)

Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
Journal of Symbolic Logic 44(1), 36-50 (1979)

Egly, U., Kronegger, M., Lonsing, F., Pfandler, A.: Conformant planning as a
case study of incremental QBF solving. In: Artificial Intelligence and Symbolic
Computation (AISC’14). pp. 120-131 (2014)

Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean for-
mulas. In: Handbook of Satisfiability, pp. 761-780. IOS Press (2009)

Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning
in the evaluation of quantified boolean formulas. Journal of Artificial Intelligence
Research (JAIR) 26, 371-416 (2006)

Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with coun-
terexample guided refinement. Journal of Artificial Intelligence 234, 1-25 (2016)
Kleine Biining, H., Karpinski, M., Flégel, A.: Resolution for quantified boolean
formulas. Information and Computation 117(1), 12-18 (1995)

Kontchakov, R., Pulina, L., Sattler, U., Schneider, T., Selmer, P., Wolter, F., Za-
kharyaschev, M.: Minimal module extraction from DL-lite ontologies using QBF
solvers. In: International Joint Conference on Artificial Intelligence (IJCAI). pp.
836-841. AAAI Press (2009)

Krajicek, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory,
Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University
Press, Cambridge (1995)

Liang, J.H., Ganesh, V., Zulkoski, E., Zaman, A., Czarnecki, K.: Understanding
VSIDS branching heuristics in conflict-driven clause-learning SAT solvers. In: Haifa
Verification Conference (HVC). pp. 225-241 (2015)

16

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Lonsing, F.: Dependency Schemes and Search-Based QBF Solving: Theory and
Practice. Ph.D. thesis, Johannes Kepler University (2012)

Lonsing, F., Egly, U., Seidl, M.: Q-resolution with generalized axioms. In: Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT). pp.
435-452 (2016)

Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In: Design Automation Conference (DAC). pp. 530-535
(2001)

Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In: Design Automation Conference (DAC). pp. 530-535
(2001)

Peitl, T., Slivovsky, F., Szeider, S.: Long distance Q-resolution with dependency
schemes. In: International Conference on Theory and Applications of Satisfiability
Testing (SAT). pp. 500-518 (2016)

Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF.
In: National Conference on Artificial Intelligence (AAAT). pp. 1045-1050. AAAI
Press (2007)

Samer, M., Szeider, S.: Backdoor sets of quantified boolean formulas. Journal of
Automated Reasoning 42(1), 77-97 (2009)

Samulowitz, H., Bacchus, F.: Using SAT in QBF. In: International Conference on
Principles and Practice of Constraint Programming (CP). pp. 578-592 (2005)
Shacham, O., Zarpas, E.: Tuning the VSIDS decision heuristic for bounded model
checking. In: International Workshop on Microprocessor Test and Verification
(MTV). p. 75 (2003)

Silva, J.P.M.: The impact of branching heuristics in propositional satisfiability
algorithms. In: Portugese Conference on Progress in Artificial Intelligence (EPIA).
pp. 62-74 (1999)

Slivovsky, F.: Structure in #SAT and QBF. Ph.D. thesis, Vienna University of
Technology (2015)

Slivovsky, F., Szeider, S.: Variable dependencies and Q-resolution. In: International
Conference on Theory and Applications of Satisfiability Testing (SAT). pp. 269—
284 (2014)

Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes.
TCS 612, 83-101 (2016)

Van Gelder, A.: Variable independence and resolution paths for quantified boolean
formulas. In: International Conference on Principles and Practice of Constraint
Programming (CP). pp. 789-803. Springer (2011)

Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability
solver. In: International Conference on Computer-aided Design (ICCAD). pp. 442—
449 (2002)

17

