Skip to main content

A Lower Bound on CNF Encodings of the At-Most-One Constraint

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2017 (SAT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10491))

Abstract

Constraint “at most one” is a basic cardinality constraint which requires that at most one of its \(n\) boolean inputs is set to \(1\). This constraint is widely used when translating a problem into a conjunctive normal form (CNF) and we investigate its CNF encodings suitable for this purpose. An encoding differs from a CNF representation of a function in that it can use auxiliary variables. We are especially interested in propagation complete encodings which have the property that unit propagation is strong enough to enforce consistency on input variables. We show a lower bound on the number of clauses in any propagation complete encoding of the “at most one” constraint. The lower bound almost matches the size of the best known encodings. We also study an important case of 2-CNF encodings where we show a slightly better lower bound. The lower bound holds also for a related “exactly one” constraint.

P. Kučera—Supported by the Czech Science Foundation (grant GA15-15511S).

P. Savický—Supported by CE-ITI and GAČR under the grant GBP202/12/G061 and by the institutional research plan RVO:67985807.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks: a theoretical and empirical study. Constraints 16(2), 195–221 (2011). doi:10.1007/s10601-010-9105-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babka, M., Balyo, T., Čepek, O., Gurský, Š., Kučera, P., Vlček, V.: Complexity issues related to propagation completeness. Artif. Intell. 203, 19–34 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bacchus, F.: GAC via unit propagation. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 133–147. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74970-7_12

    Chapter  Google Scholar 

  5. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality constraints. In: Proceedings of 9th International Conference on Principles and Practice of Constraint Programming, CP 2003, Kinsale, Ireland, Berlin, Heidelberg, 29 September–3 October 2003, pp. 108–122 (2003). doi:10.1007/978-3-540-45193-8_8

  6. Ben-Haim, Y., Ivrii, A., Margalit, O., Matsliah, A.: Perfect hashing and CNF encodings of cardinality constraints. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 397–409. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31612-8_30

    Chapter  Google Scholar 

  7. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam, The Netherlands (2009)

    MATH  Google Scholar 

  8. Bordeaux, L., Marques-Silva, J.: Knowledge compilation with empowerment. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 612–624. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27660-6_50

    Chapter  Google Scholar 

  9. Chen, J.: A new SAT encoding of the at-most-one constraint. In: ModRef 2010 (2010)

    Google Scholar 

  10. Crama, Y., Hammer, P.: Boolean Functions: Theory, Algorithms, and Applications. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  11. Frisch, A.M., Giannaros, P.A.: SAT encodings of the at-most-k constraint. some old, some new, some fast, some slow. In: Proceeding of the Tenth International Workshop of Constraint Modelling and Reformulation (2010)

    Google Scholar 

  12. Frisch, A.M., Peugniez, T.J., Doggett, A.J., Nightingale, P.W.: Solving non-boolean satisfiability problems with stochastic local search: A comparison of encodings. J. Autom. Reason. 35(1), 143–179 (2005). doi:10.1007/s10817-005-9011-0

    MathSciNet  MATH  Google Scholar 

  13. Hölldobler, S., Nguyen, V.H.: An efficient encoding of the at-most-one constraint. Technical Report MSU-CSE-00-2, Knowledge Representation and Reasoning Groupp. 2013–04, Technische Universitt Dresden, 01062 Dresden, Germany (2013). http://www.wv.inf.tu-dresden.de/Publications/2013/report-13-04.pdf

  14. Klieber, W., Kwon, G.: Efficient CNF encoding for selecting 1 from n objects. In: Fourth Workshop on Constraints in Formal Verification (2007)

    Google Scholar 

  15. Kučera, P., Savický, P., Vorel, V.: A lower bound on CNF encodings of the at-most-one constraint (2017). https://arxiv.org/abs/1704.08934, arXiv:1704.08934 [cs.CC]

  16. Marques-Silva, J., Lynce, I.: Towards robust CNF encodings of cardinality constraints. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 483–497. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74970-7_35

    Chapter  Google Scholar 

  17. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: Proceedings of 11th International Conference on Principles and Practice of Constraint Programming, CP 2005, Sitges, Spain, 1–5 October 2005, pp. 827–831. Berlin, Heidelberg (2005). doi:10.1007/11564751_73

  18. del Val, A.: Tractable databases: how to make propositional unit resolution complete through compilation. In: Knowledge Representation and Reasoning, pp. 551–561 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Kučera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kučera, P., Savický, P., Vorel, V. (2017). A Lower Bound on CNF Encodings of the At-Most-One Constraint. In: Gaspers, S., Walsh, T. (eds) Theory and Applications of Satisfiability Testing – SAT 2017. SAT 2017. Lecture Notes in Computer Science(), vol 10491. Springer, Cham. https://doi.org/10.1007/978-3-319-66263-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66263-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66262-6

  • Online ISBN: 978-3-319-66263-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics