Abstract
Decomposition width parameters such as treewidth provide a measurement on the complexity of a graph. Finding a decomposition of smallest width is itself NP-hard but lends itself to a SAT-based solution. Previous work on treewidth, branchwidth and clique-width indicates that identifying a suitable characterization of the considered decomposition method is key for a practically feasible SAT-encoding.
In this paper we study SAT-encodings for the decomposition width parameters special treewidth and pathwidth. In both cases we develop SAT-encodings based on two different characterizations. In particular, we develop two novel characterizations for special treewidth based on partitions and elimination orderings. We empirically obtained SAT-encodings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a \(k\)-tree. SIAM J. Algebr. Discret. Method. 8(2), 277–284 (1987)
Berg, J., Järvisalo, M.: SAT-based approaches to treewidth computation: An evaluation. In: 26th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2014, Limassol, Cyprus, 10–12 November 2014, pp. 328–335. IEEE Computer Society (2014)
Biedl, T., Bläsius, T., Niedermann, B., Nöllenburg, M., Prutkin, R., Rutter, I.: Using ILP/SAT to determine pathwidth, visibility representations, and other grid-based graph drawings. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 460–471. Springer, Cham (2013). doi:10.1007/978-3-319-03841-4_40
Bodlaender, H.L., Kratsch, S., Kreuzen, V.J.C.: Fixed-parameter tractability and characterizations of small special treewidth. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp. 88–99. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45043-3_9
Bodlaender, H.L., Kratsch, S., Kreuzen, V.J., Kwon, O.J., Ok, S.: Characterizing width two for variants of treewidth (part 1). Discr. Appl. Math. 216, 29–46 (2017)
Courcelle, B.: Special tree-width and the verification of monadic second-order graph properties. In: Lodaya, K., Mahajan, M. (eds) 2010 IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS, LIPIcs, Chennai, India, vol. 8, pp. 13–29. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 15–18 Dec 2010
Courcelle, B.: On the model-checking of monadic second-order formulas with edge set quantifications. Discr. Appl. Math. 160(6), 866–887 (2012)
Dell, H., Rosamond, F.: The 1st parameterized algorithms and computational experiments challenge–track A: Treewidth. Technical report (2016). https://pacechallenge.wordpress.com/2016/09/12/here-are-the-results-of-the-1st-pace-challenge/
Diestel, R.: Graph Theory: Graduate Texts in Mathematics, 2nd edn. Springer Verlag, New York (2000)
Habib, M., Möhring, R.H.: Treewidth of cocomparability graphs and a new order-theoretic parameter. Order 1, 47–60 (1994)
Heule, M., Szeider, S.: A SAT approach to clique-width. ACM Trans. Comput. Log. 16(3), 24 (2015)
Kinnersley, N.G.: The vertex separation number of a graph equals its path-width. Inf. Process. Lett. 42(6), 345–350 (1992)
Kloks, T.: Treewidth: Computations and Approximations. Springer Verlag, Berlin (1994)
Lodha, N., Ordyniak, S., Szeider, S.: A SAT approach to branchwidth. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 179–195. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_12
Robertson, N., Seymour, P.D.: Graph minors. I. excluding a forest. J. Combin. Theory Ser. B 35(1), 39–61 (1983)
Samer, M., Veith, H.: Encoding treewidth into SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 45–50. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2_6
Weisstein, E.: MathWorld online mathematics resource (2016). http://mathworld.wolfram.com
Acknowledgments
The authors kindly acknowledge the support by the Austrian Science Fund (FWF, projects W1255-N23 and P-26200).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Lodha, N., Ordyniak, S., Szeider, S. (2017). SAT-Encodings for Special Treewidth and Pathwidth. In: Gaspers, S., Walsh, T. (eds) Theory and Applications of Satisfiability Testing – SAT 2017. SAT 2017. Lecture Notes in Computer Science(), vol 10491. Springer, Cham. https://doi.org/10.1007/978-3-319-66263-3_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-66263-3_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66262-6
Online ISBN: 978-3-319-66263-3
eBook Packages: Computer ScienceComputer Science (R0)