Abstract
We study the parameterized complexity of the propositional model counting problem #SAT for CNF formulas. As the parameter we consider the treewidth of the following two graphs associated with CNF formulas: the consensus graph and the conflict graph. Both graphs have as vertices the clauses of the formula; in the consensus graph two clauses are adjacent if they do not contain a complementary pair of literals, while in the conflict graph two clauses are adjacent if they do contain a complementary pair of literals. We show that #SAT is fixed-parameter tractable for the treewidth of the consensus graph but W[1]-hard for the treewidth of the conflict graph. We also compare the new parameters with known parameters under which #SAT is fixed-parameter tractable.
Supported by the Austrian Science Fund (FWF), project P26696. Robert Ganian is also affiliated with FI MU, Brno, Czech Republic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for #SAT and Bayesian inference. In: 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2003), pp. 340–351 (2003)
Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–21 (1993)
Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)
Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: A c\({}^{\text{ k }}\) n 5-approximation algorithm for treewidth. SIAM J. Comput. 45(2), 317–378 (2016)
Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996)
Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic. Discr. Appl. Math. 108(1–2), 23–52 (2001)
Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, New York (2010)
Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London (2013)
Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005 (2009)
Galesi, N., Kullmann, O.: Polynomial time SAT decision, hypergraph transversals and the hermitian rank. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 89–104. Springer, Heidelberg (2005). doi:10.1007/11527695_8
Ganian, R., Hlinený, P., Obdrzálek, J.: Better algorithms for satisfiability problems for formulas of bounded rank-width. Fund. Inform. 123(1), 59–76 (2013)
Ganian, R., Szeider, S.: Community structure inspired algorithms for SAT and #SAT. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 223–237. Springer, Cham (2015). doi:10.1007/978-3-319-24318-4_17
Iwama, K.: CNF-satisfiability test by counting and polynomial average time. SIAM J. Comput. 18(2), 385–391 (1989)
Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, chap. 11, pp. 339–401. IOS Press (2009)
Kleine Büning, H., Zhao, X.: Satisfiable formulas closed under replacement. In: Kautz, H., Selman, B. (eds.) Proceedings for the Workshop on Theory and Applications of Satisfiability. Electronic Notes in Discrete Mathematics, vol. 9. Elsevier Science Publishers, North-Holland (2001)
Kloks, T.: Treewidth: Computations and Approximations. Springer, Berlin (1994)
Knuth, D.E.: How fast can we multiply? In: The Art of Computer Programming. Seminumerical Algorithms, 3rd edn., vol. 2, chap. 4.3.3, pp. 294–318. Addison-Wesley (1998)
Kullmann, O.: The combinatorics of conflicts between clauses. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 426–440. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24605-3_32
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2006)
Nishimura, N., Ragde, P., Szeider, S.: Solving #SAT using vertex covers. Acta Informatica 44(7–8), 509–523 (2007)
Ordyniak, S., Paulusma, D., Szeider, S.: Satisfiability of acyclic and almost acyclic CNF formulas. Theor. Comput. Sci. 481, 85–99 (2013)
Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)
Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1–2), 273–302 (1996)
Sæther, S.H., Telle, J.A., Vatshelle, M.: Solving #SAT and MAXSAT by dynamic programming. J. Artif. Intell. Res. 54, 59–82 (2015)
Samer, M., Szeider, S.: Fixed-parameter tractability. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, chap. 13, pp. 425–454. IOS Press (2009)
Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete Algorithms 8(1), 50–64 (2010)
Scheder, D., Zumstein, P.: How many conflicts does it need to be unsatisfiable? In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 246–256. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79719-7_23
Szeider, S.: On fixed-parameter tractable parameterizations of SAT. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24605-3_15
Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8(2), 189–201 (1979)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Ganian, R., Szeider, S. (2017). New Width Parameters for Model Counting. In: Gaspers, S., Walsh, T. (eds) Theory and Applications of Satisfiability Testing – SAT 2017. SAT 2017. Lecture Notes in Computer Science(), vol 10491. Springer, Cham. https://doi.org/10.1007/978-3-319-66263-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-66263-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66262-6
Online ISBN: 978-3-319-66263-3
eBook Packages: Computer ScienceComputer Science (R0)