Skip to main content

On the Community Structure of Bounded Model Checking SAT Problems

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2017 (SAT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10491))

  • 1297 Accesses

Abstract

Following the impressive progress made in the quest for efficient SAT solving in the last years, a number of researches has focused on explaining performances observed on typical application problems. However, until now, tentative explanations were only partial, essentially because the semantic of the original problem was lost in the translation to SAT.

In this work, we study the behavior of so called “modern” SAT solvers under the prism of the first successful application of CDCL solvers, i.e., Bounded Model Checking. We trace the origin of each variable w.r.t. its unrolling depth, and show a surprising relationship between these time steps and the communities found in the CNF encoding. We also show how the VSIDS heuristic, the resolution engine, and the learning mechanism interact with the unrolling steps. Additionally, we show that the Literal Block Distance (LBD), used to identify good learnt clauses, is related to this measure.

Our work shows that communities identify strong dependencies among the variables of different time steps, revealing a structure that arises when unrolling the problem, and which seems to be caught by the LBD measure.

This work was partially supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement no. 279611, and by the French National Research Agency (ANR), with the ANR SATAS Project 2015 (ANR-15-CE40-0017-01), and SafeRiver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    CDCL is nowadays the dominant technique solving this kind of problems.

  2. 2.

    In this model, the variables of the CNF are the nodes of the graph, and there is an edge between two variables if they appear together in a clause. In its weighted version –the one we use–, the clause size is also considered.

  3. 3.

    For simplicity, we omit the very few variables which do not belong to any iteration.

References

  1. Ansótegui, C., Giráldez-Cru, J., Levy, J.: The community structure of SAT formulas. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 410–423. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31612-8_31

    Chapter  Google Scholar 

  2. Ansótegui, C., Giráldez-Cru, J., Levy, J., Simon, L.: using community structure to detect relevant learnt clauses. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 238–254. Springer, Cham (2015). doi:10.1007/978-3-319-24318-4_18

    Chapter  Google Scholar 

  3. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern sat solvers. In: Proceeding of IJCAI 2009, pp. 399–404 (2009)

    Google Scholar 

  4. Biere, A.: Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT Competition 2016. In: Proceeding of the SAT Competition 2016, Department of Computer Science Series of Publications B, vol. B-2016-1, pp. 44–45. University of Helsinki (2016)

    Google Scholar 

  5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999). doi:10.1007/3-540-49059-0_14

    Chapter  Google Scholar 

  6. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theor. Exper. 2008(10), P10008 (2008)

    Article  Google Scholar 

  7. Darwiche, A., Pipatsrisawat, K.: Complete Algorithms, chap. 3, pp. 99–130. IOS Press (2009)

    Google Scholar 

  8. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005). doi:10.1007/11499107_5

    Chapter  Google Scholar 

  9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24605-3_37

    Chapter  Google Scholar 

  10. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  11. Giráldez-Cru, J., Levy, J.: A modularity-based random SAT instances generator. In: Proceeding of IJCAI 2015, pp. 1952–1958 (2015)

    Google Scholar 

  12. Giráldez-Cru, J., Levy, J.: Generating SAT instances with community structure. Artif. Intell. 238, 119–134 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giráldez-Cru, J., Levy, J.: Locality in random SAT instances. In: Proceeding of IJCAI 2017 (2017)

    Google Scholar 

  14. Gomes, C.P., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 121–135. Springer, Heidelberg (1997). doi:10.1007/BFb0017434

    Chapter  Google Scholar 

  15. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching heuristic for SAT solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 123–140. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_9

    Google Scholar 

  16. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Inf. Process. Lett. 47(4), 173–180 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Martins, R., Manquinho, V., Lynce, I.: Community-based partitioning for MaxSAT solving. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 182–191. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39071-5_14

    Chapter  Google Scholar 

  18. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceeding of DAC 2001, pp. 530–535 (2001)

    Google Scholar 

  19. Neves, M., Martins, R., Janota, M., Lynce, I., Manquinho, V.: Exploiting resolution-based representations for MaxSAT solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 272–286. Springer, Cham (2015). doi:10.1007/978-3-319-24318-4_20

    Chapter  Google Scholar 

  20. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  21. Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G., Simon, L.: Impact of community structure on SAT solver performance. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 252–268. Springer, Cham (2014). doi:10.1007/978-3-319-09284-3_20

    Google Scholar 

  22. Oh, C.: Between SAT and UNSAT: the fundamental difference in CDCL SAT. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 307–323. Springer, Cham (2015). doi:10.1007/978-3-319-24318-4_23

    Chapter  Google Scholar 

  23. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution engines. Artif. Intell. 175(2), 512–525 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Silva, J.P.M., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

    Article  MathSciNet  Google Scholar 

  25. Katsirelos, G., Simon, L.: Eigenvector centrality in industrial SAT instances. In: Milano, M. (ed.) CP 2012. LNCS, pp. 348–356. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33558-7_27

    Chapter  Google Scholar 

  26. Strichman, O.: Accelerating bounded model checking of safety properties. Form. Methods Syst. Des. 24(1), 5–24 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Giráldez-Cru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Baud-Berthier, G., Giráldez-Cru, J., Simon, L. (2017). On the Community Structure of Bounded Model Checking SAT Problems. In: Gaspers, S., Walsh, T. (eds) Theory and Applications of Satisfiability Testing – SAT 2017. SAT 2017. Lecture Notes in Computer Science(), vol 10491. Springer, Cham. https://doi.org/10.1007/978-3-319-66263-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66263-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66262-6

  • Online ISBN: 978-3-319-66263-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics