Abstract
Many heuristics, such as decision, restart, and clause reduction heuristics, are incorporated in CDCL solvers in order to improve performance. In this paper, we focus on learnt clause reduction heuristics, which are used to suppress memory consumption and sustain propagation speed. The reduction heuristics consist of evaluation criteria, for measuring the usefulness of learnt clauses, and a reduction strategy in order to select clauses to be removed based on the criteria. LBD (literals blocks distance) is used as the evaluation criteria in many solvers. For the reduction strategy, we propose a new concise schema based on the coverage ratio of used LBDs. The experimental results show that the proposed strategy can achieve higher coverage than the conventional strategy and improve the performance for both SAT and UNSAT instances.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In Glucose 3.0 or later, the LBD update is executed only for clauses used in unit propagations on and after the first UIP in conflict analysis.
- 2.
In Glucose 3.0 or later, \(l_{\!\text{ first }}\) and \(l_{\!\text{ inc }}\) are 2000 and 300 respectively [2].
- 3.
SAT 2014 competition, SAT-Race 2015 and SAT 2016 competition.
- 4.
A clause is unused if it does not produce any propagation or conflict, except for the UIP propagation immediately after being learn it.
- 5.
We exclude Riss 6, which ranked 2nd in the competition. Because it uses Linux-specific APIs, we could not compile it in our computing environment (Mac OS X).
References
Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Proceedings of IJCAI-2009, pp. 399–404 (2009)
Audemard, G., Simon, L.: Glucose 3.1 in the SAT 2014 competition (2014). http://satcompetition.org/edacc/sc14/solver-description-download/118. SAT Competition 2014 Solver Description
Bayardo Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve real-world SAT instances. In: Proceedings of the 14th National Conference on Artificial Intelligence (AAAI 1997), pp. 203–208 (1997)
Biere, A.: Lingeling and Friends at the SAT Competition 2011 (2011). http://fmv.jku.at/papers/biere-fmv-tr-11-1.pdf. SAT Competition 2011 Solver Description
Katebi, H., Sakallah, K.A., Marques-Silva, J.P.: Empirical study of the anatomy of modern sat solvers. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 343–356. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21581-0_27
Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)
Nabeshima, H., Iwanuma, K., Inoue, K.: On-the-fly lazy clause simplification based on binary resolvents. In: ICTAI, pp. 987–995. IEEE (2013)
Oh, C.: Between SAT and UNSAT: the fundamental difference in CDCL SAT. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 307–323. Springer, Cham (2015). doi:10.1007/978-3-319-24318-4_23
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Nabeshima, H., Inoue, K. (2017). Coverage-Based Clause Reduction Heuristics for CDCL Solvers. In: Gaspers, S., Walsh, T. (eds) Theory and Applications of Satisfiability Testing – SAT 2017. SAT 2017. Lecture Notes in Computer Science(), vol 10491. Springer, Cham. https://doi.org/10.1007/978-3-319-66263-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-66263-3_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66262-6
Online ISBN: 978-3-319-66263-3
eBook Packages: Computer ScienceComputer Science (R0)