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Abstract

This paper introduces a parametric level-set method for tomographic reconstruction of partially
discrete images. Such images consist of a continuously varying background and an anomaly with a
constant (known) grey-value. We represent the geometry of the anomaly using a level-set function,
which we represent using radial basis functions. We pose the reconstruction problem as a bi-level
optimization problem in terms of the background and coefficients for the level-set function. To
constrain the background reconstruction we impose smoothness through Tikhonov regularization.
The bi-level optimization problem is solved in an alternating fashion; in each iteration we first
reconstruct the background and consequently update the level-set function. We test our method on
numerical phantoms and show that we can successfully reconstruct the geometry of the anomaly,
even from limited data. On these phantoms, our method outperforms Total Variation reconstruction,
DART and P-DART.

1 Introduction

The need to reconstruct (quantitative) images of an object from tomographic measurements appears
in many applications. At the heart of many of these applications is a projection model based on the
Radon transform. Characterizing the object under investigation by a function u(x) with x ∈ D = [0, 1]2,
tomographic measurements are modeled as

pi =

∫
D
u(x)δ(si − n(θi) · x) dx,

where si ∈ [0, 1] denotes the shift, θi ∈ [0, 2π) denotes the angle and n(θ) = (cos θ, sin θ). The goal is to
retrieve u from a number, m, of such measurements for various shifts and directions.

If the shifts and angles are regularly sampled, the transform can be inverted directly by Filtered
back-projection or Fourier reconstruction [9]. A common approach for dealing with non-regularly sampled
or missing data, is to express u in terms of a basis

u(x) =

n∑
j=1

ujb(x− xj),

where b are piece-wise polynomial basis functions and {xj}nj=1 is a regular (pixel) grid. This leads to a
set of m linear equations in n unknowns

p = Wu,

with wij =
∫
D b(x − xj)δ(si − n(θi) · x) dx. Due to noise in the data or errors in the projection model

the system of equations is inconsistent, so a solution may not exist. Furthermore, there may be many
solutions that fit the observations equally well because the system is underdetermined. A standard
approach to mitigate these issues is to formulate a regularized least-squares problem

min
u

1
2‖Wu− p‖22 + λ

2 ‖Ru‖22,

where R is the regularization operator. Such a formulation is popular mainly because very efficient
algorithms exist for solving it. Depending on the choice of R, however, this formulation forces the
solution to have certain properties which may not reflect the truth. For example, setting R to be the
discrete Laplace operator will produce a smooth reconstruction, whereas setting R to be the identity
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matrix forces the individual coefficients ui to be small. In many applications such quadratic regularization
terms do not reflect the characteristics of the object we are reconstructing. For example, if we expect u
to be piecewise constant, we could use a Total Variation regularization term ‖Ru‖1 where R is a discrete
gradient operator [14]. Recently, a lot of progress has been made in developing efficient algorithms for
solving such non-smooth optimization problems [6]. If the object under investigation is known to consist
of only two distinct materials, the regularization can be formulated in terms of a non-convex constraint
u ∈ {u0, u1}n. The latter leads to a combinatorial optimization problem, solutions to which can be
approximated using heuristic algorithms [3].

In this paper, we consider tomographic reconstruction of partially discrete objects that consist of a
region of constant density embedded in a continuously varying background. In this case, neither the
quadratic, Total Variation nor non-convex constraints by themselves are suitable. We therefore propose
the following parametrization

u(x) =

{
u0(x) if x ∈ Ω,
u1 otherwise.

The inverse problem now consists of finding u0(x), u1 and the set Ω. We can subsequently apply suitable
regularization to u0 separately. To formulate a tractable optimization algorithm, we represent the set Ω
using a level-set function φ(x) such that

Ω = {x |φ(x) > 0}.

In the following sections, we discuss how to formulate a variational problem to reconstruct Ω and u0

based on a parametric level-set representation of Ω and assuming we know u1.
The outline of the paper is as follows. In section 2 we discuss the parametric level-set method and

propose some practical heuristics for choosing various paramaters that occur in the formulation. A joint
background-anomaly reconstruction algorithm for partially discrete tomography is discussed in section 3.
The results on few moderately complicated numerical phantoms are presented in Section 4. We provide
some concluding remarks in Section 5.

2 Level-set methods

In terms of the level-set function, we can express u as

u(x) = (1− h(φ(x)))u0(x) + h(φ(x))u1,

where h is the Heaviside function and the latter term represents the anomaly.
Level-set methods have received much attention in geometric inverse problems, interface tracking,

segmentation and shape optimization. The reason being their ability to handle topological changes. The
classical level-set method, introduced by Sethian and Osher [12], solves the Hamiltonian-Jacobi equation,
also known as level-set equation.

∂φ

∂t
+ v|∇φ| = 0, (1)

where φ : R2 ×R+ → R denotes the level-set function as a time-dependent quantity for representing the
shape and v denotes the normal velocity. In the inverse-problems setting, the velocity v is often derived
from the gradient of the cost function with respect to the model parameter [5], [7]. There are various
numerical issues associated with the numerical solution of level-set equation, e.g. reinitialization of the
level-set. We refer the interested reader to a seminal paper in level-set method [11] and its application
to computational tomography [10].

Instead of taking this classical level-set approach, we employ a parametric level-set approach, first
introduced by Aghasi et al [1]. In this method, the level-set function is parametrized using radial basis
functions:

φ(x) =

n′∑
j=1

αjΨ(βj‖x− χj‖2),

where Ψ(.) is a radial basis function, {αj}n
′

j=1 and {χj}n
′

j=1 are the amplitudes and nodes respectively,

and the parameters {βj}n
′

j=1 control the widths. Introducing the kernel matrix A(χ,β) with elements

aij = Ψ(βj‖xi − χj‖2),
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we can now express u as

u = (1− h(A(χ,β)α))� u0 + h(A(χ,β)α)u1, (2)

where h is applied element-wise to the vector A(χ,β)α and � denotes the element-wise (Hadamard)
product. By choosing the parameters (χ,β,α) appropriately we can represent any (smooth) shape. To
simplify matters and make the resulting optimization problem more tractable, we consider a fixed regular
grid {χj}n

′

j=1 and a fixed width βj ≡ β. In the following we choose β in accordance with the gridspacing
∆χ as β = 1/(η∆χ), where η determines the influence of RBF on its neighbors.

2.0.1 Example

To show that the reconstruction of level-set with a finitely many radial basis functions, we consider the
level-set shown in Figure 1 (a). With n′ = 196 RBFs, it is possible to reconstruct a smooth shape
discretized on a grid with n = 256× 256 pixels.

(a) (b) (c) (d)

Figure 1: Any (sufficiently) smooth level-set can be reconstructed from radial basis functions. (a)
Level-set to be reconstructed is denoted by green line. Initial level-set (dash-dotted line) is generated by
some positive RBFs (denoted by red plusses) near the center and negative RBFs all around (denoted
by blue dots) (b) Initial level-set function and the 0-level plane (c) Reconstructed level-set denoted by
dash-dotted line with corresponding positive and negative RBFs (d) Final level-set function

Finally, the discretized reconstruction problem for determining the shape is now formulated as

min
α

{
f(α) = ‖W [(u1 − u0)� hε(Aα)]− (p−Wu0)‖22

}
, (3)

where hε is a smooth approximation of the Heaviside function. The gradient and Gauss-Newton Hessian
of f(α) are given by

∇f(α) = ATDT
αW

T r(α),

HGN (f(α)) = ATDT
αW

TWDαA.
(4)

where the diagonal matrix and residual vectors are given by

Dα = diag((u1 − u0)� h′ε(Aα)), r(α) = W [(u1 − u0)� hε(Aα)]− (p−Wu0).

Using a Gauss-Newton method, the level-set parameters are updated as

α(k+1) = α(k) − µ(k)
(
HGN (f(α(k)))

)−1

∇f(α(k)),

where µk is a suitable stepsize and α(0) is a given initial estimate of the shape.
From equation 4, it can be observed that the ability to update the level-set parameters depends on

two main factors: 1) The difference between u0 and u1, and 2) the derivative of the Heaviside function.
Hence, the support and smoothness of h′ε plays a crucial role in the sensitivity. More details on the choice
of hε are discussed in section 2.1.

2.0.2 Example

We demonstrate the parametric level-set method on a (binary) discrete tomography problem. We consider
the model described in Figure 2(a). For a full-angle case (0 ≤ θ ≤ π) with a large number of samples,
Figure 2(c) shows that it is possible to accurately reconstruct a complex shape.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Parametric level-set method for Discrete tomography problem. (a) True model (n = 256×256)
(b) RBF grid (n′ = 27 × 27) with initial level-set denoted by green line, positive and negative RBFs
are denoted by red pluses and blue dots respectively (c) Final level-set denoted by the green line, and
the corresponding positive and negative RBFs (d) Initial level-set function (e) level-set function after 10
iterations (f) final level-set function after 25 iterations.

2.1 Approximation to Heaviside function

The update of the level-set function primarily depends on the Heaviside function. Various approximations
have been mentioned earlier [1]. These approximations suffer from the variational region of Dirac-Delta
function near its peak (δ|x=0) which amplifies the gradient disproportionally. This sometimes results in
poor updates for the level-set parameter α, and hence ruining the reconstructions. To solve this issue, we
propose a new formulation of the Heaviside function. We construct the piecewise Dirac-Delta function
shown in equation (5):

δ(x) =



0 x ≤ −ε
1

4(1−µ)ε

(
1 + x+(1−µ)ε

µε + 1
π sin(π x+(1−µ)ε

µε )
)

−ε < x ≤ −µε
1

2(1−µ)ε −µε < x ≤ µε
1

4(1−µ)ε

(
1− x−(1−µ)ε

µε − 1
π sin(π x−(1−µ)ε

µε )
)

µε < x ≤ ε
0 x ≥ ε

(5)

This new approximation has been plotted in Figure 3. The above formulation provides mainly 3 benefits:
1) constant sensitivity in the boundary region controlled by parameter µ, 2) a smooth transition part
and 3) the compact support.

Definition 2.1. In accordance with the compact approximation of the Heaviside function with width ε,
a level-set boundary, denoted by ∂Ω, is defined as the set of all the points x ∈ R2 satisfying the condition
h′ε(φ(x)) > 0.

Figure 3(c) shows a graphical representation of level-set boundary.

Lemma 2.1. For any smooth and compact approximation of the Heaviside function with finite width ε,
there exists a relation between level-set boundary and gradient of level-set function, given by |δTx∇φ(x)| ≤
ε, where, δx = maxx∈∂Ω |x− x0| and x0 is the point on the level-set.
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Proof. From Taylor series expansion for φ(x) near the level-set point x0, we get

φ(x) = φ(x0) + (x− x0)T∇φ(x0) +O(‖x− x0‖2).

h′ε(φ(x)) > 0 if and only if |φ(x)| < ε. Neglecting higher-order terms, we get |(x − x0)T∇φ(x0)| ≤ ε.
This implies the above relation.

From the lemma 2.1, it is important to choose the Heaviside width in such a way that the level-set
boundary exists on model grid. For simplicity, we crudely approximate the gradient of level-set function
using upper and lower bounds [8]. Hence, the heaviside width is represented by

ε = κ

(
max(φ(x))−min(φ(x))

∆x

)
= κ

(
max(Aα)−min(Aα)

∆x

)
, (6)

where κ controls the number of gridpoints a level-set boundary can have. This formulation of ε solves the
re-initialization issue associated with the level-set method. The steepness (|∇φ(x)| � 1) of the level-set
function in the level-set boundary can be handled by this formulation as well, as it adapts the level-set
boundary to global change in level-set function.

-1.5 -1 -0.5 0 0.5 1 1.5
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(a) (b) (c)

Figure 3: New formulation for approximating the Heaviside function. the Heaviside functions (a) and
corresponding Dirac-Delta functions (b) with ε = 1 and µ = 0.2 . Global approximation is constructed
from inverse tangent function, while compact one is composed of linear and sinusoid functions. (c)
level-set boundary (orange region) around zero level-set denoted by blue line, n represents the normal
direction at x0.

3 Joint reconstruction algorithm

Reconstructing both the shape and the background parameter can be cast as a bi-level optimization
problem

min
u0,α

{
f(α,u0) := 1

2‖W [(1− h(Aα)u0 + h(Aα)u1]− p‖22 + λ
2 ‖Lu0‖22

}
, (7)

where L is of form [LTx LTy ]T . Lx and Ly are the second-order finite-difference operators in x and y
directions respectively. This optimization problem is separable; it is quadratic in u0 and non-linear in α.
In order to exploit the fact that the problem has a closed-form solution in u0 for each α, we introduce
a reduced objective

f(α) = min
u0

f(α,u0).

The gradient and Hessian of this reduced objective are given by

∇f(α) = ∇αf(α,u0), (8)

∇2f(α) = ∇2
αf −∇2

α,u0
f
(
∇2

u0
f
)−1∇2

α,u0
f, (9)

where u0 = argminu0
f(α,u0) [2].

Using a modified Gauss-Newton algorithm to find a minimizer of f , leads to the following alternating
algorithm

u
(k+1)
0 = arg min

u0

f(α(k),u0) (10)

α(k+1) = α(k) − µ(k)
(
HGN (f(α(k)))

)−1

∇αf(α(k),u
(k+1)
0 ), (11)
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where the expressions for the gradient and Gauss-Newton Hessian are given by (4). Convergence of this
alternating approach to a local minimum of (7) is guaranteed as long as the step-length satisfies the
strong Wolfe conditions [16].

The reconstruction algorithm based on this iterative scheme is presented in Algorithm 1.

Algorithm 1 Joint Reconstruction Algorithm

Require: p - data, W - forward modeling operator, u1 - anomaly property, A - RBF Kernel matrix, α0

- initial RBF weights, κ - Heaviside width parameter, µ - Heaviside inclination parameter
Ensure: αK−1 - final weights, u - corresponding model
1: for k = 0 to K − 1 do
2: compute Heaviside ε from equation (6)

3: compute background parameter u
(k+1)
0 by solving equation (10)

4: compute level-set parameter α(k+1) from equation (11)
5: end for
6: compute u from equation (2).

We use the LSQR method in step 3, with pre-defined maximum iterations and a tolerance value. A
trust-region method is applied to compute α(k+1) in step 4 restricting the conjugate gradient to only 10
iterations.

4 Numerical Experiments

The numerical experiments are performed on 4 phantoms shown in figure 4. Each phantom has a constant
gray value of parameter 1. For the first two phantoms, the background varies from 0 to 0.5, while for
the next two, it varies from 0 to 0.8. In order to avoid inverse crime, the data is generated using a line
Kernel, and the forward model uses a Joseph kernel. We use ASTRA toolbox to compute the forward
and backward projections [4]. First, we show the results on the noiseless full-view data and later we
compare various methods to proposed method in limited-data case with additive gaussian noise of 10 dB
SNR.

(a) Model A (b) Model B (c) Model C (d) Model D

Figure 4: Phantoms for Simulations. All the models have resolution of 256× 256 pixels.

For the parametric level-set method, we use compactly supported radial basis functions. The basis
functions has the form given below:

Ψ(r) = (1− r)8
+(32r3 + 25r2 + 8r + 1).

RBF nodes are placed on a rectangular grid with the gridspacing 5 times the computational (model)
gridspacing. The grid extends to two points outside the model grid to compensate for the background
effects. The heaviside width parameter κ is set to be 0.01 and the its inclination parameter µ is set to
be 0.1.

The level-set parameter α is optimized using the fminunc package (trust-region algorithm) in
MATLAB. A total of 50 iterations are performed for predicting the α, while 200 iterations are
performed for predicting u0(x) using LSQR at each step.

4.1 Regularization parameter selection

The reconstruction with the proposed algorithm is influenced by the parameter for Tikhonov
regularization. In general, there are various strategies to choose this parameter, e.g., [15]. As our
problem formulation deals with the non-linearity in the level-set parameter, application of these kinds
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of strategies is not clear. Instead we analyze the various residuals, introduced below, with respect to
the regularization parameter.

We define three measures (all in the least-squares sense) to quantify the residuals: 1) data residual
(DR), determines the data fit between the true data and reconstructed data, 2) model residual (MR),
determines the fit between reconstructed model and true model, 3) shape residual (SR), determines the
fit between the reconstructed and true anomaly shape. In practice, one can only have a data residual
measure to figure out the regularization parameter λ. From Figure 5, it is evident that there exists a
sufficient region of λ for which the reconstructions almost stays constant. This region is easily identifiable
from the data residual plot for various λ.

(a)
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102

103

104

re
s
id

u
a

l

 =1.83e+05 

 =6.95e+06 

 =5.46e+08 

 =3.79e+05 

  =2.07e+04

Data Residual

Noise Level

Shape Residual

Model Residual

(b)λ = 1.83× 105 (c)λ = 3.79× 105

(d) λ = 6.95× 106 (e) λ = 5.46× 108

Figure 5: Variation of residuals with regularization parameter for Tikhonov. Appropriate region for
chosing λ exists between 3.79 × 105 and 6.95 × 106. (a) behavior of DR, MR and SR over λ for model
A with noisy limited-angle data. Noise amplitude is denoted by green dotted line. (b),(c),(d),(e) shows
reconstructions for various λ values

4.2 Benchmark test

For the full-view (benchmark) case, the projection data is generated on 256×256 grid with 256 detectors
and 180 projections with 0 ≤ θ ≤ π. The noise is assumed to be zero in this case. The results on the
phantoms with the full-view data are shown in Figure 6. Anomaly geometries in all of these models are
reconstructed almost perfectly with the proposed method, although the background has been smoothened
out with the tikhonov regularization.

(λ = 2.97× 107) (λ = 1.13× 109) (λ = 2.97× 107) (λ = 1.27× 108)

Figure 6: Benchmark Tests: Reconstructions with full-view noiseless data for the regularization
parameter λ shown below it.

4.3 Limited-angle test

In this case, we use only 5 projections with θ restricted from 0 to 2π/3. The data is now reduced
to almost 3% compared to the benchmark test. We also add Gaussian noise of 10 dB SNR to this
synthetic data. To check the performance of the proposed method, we compare it to Total-variation
method [4], DART [3] and its modified version for partially discrete tomography, P-DART [13]. A total
of 200 iterations were performed with regularization parameter determined from shape residual curve.
In DART, the background part was modeled using 20 discrete gray-values between its bounds for model
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A and B, while 30 discrete gray-values for model C and D. 40 DART iterations were perfomed in each
case. For P-DART, a total of 150 iterations were performed.

The results on noisy limited-angle with limited data are presented in Figure 7. The proposed method
is able to capture most of the fine details (evident from the shape residual) in the phantoms even with
the very limited data with moderate noise. The P-DART method achieves the least amount of data
residual in all the cases, but fails to capture the complete geometry of the anomaly.

5 Conclusions and Discussion

We discussed a parametric level-set method for partially discrete tomography. We model such objects as a
constant-valued shape embedded in a continuously varying background. The shape is represented using a
level-set function, which in turn is represented using radial basis functions. The reconstruction problem is
posed as a bi-level optimization problem for the background and level-set parameters. This reconstruction
problem can be efficiently solved using a variable projection approach, where the shape is iteratively
updated. Each iteration requires a full reconstruction of the background. The algorithm includes some
practical heuristics for choosing various parameters that are introduced as part of the parametric level-set
method. Numerical experiments on a few numerical phantoms show that the proposed approach can
outperform other popular methods for (partially) discrete tomography in terms of reconstruction error.
As the proposed algorithm requires repeated full reconstructions, future research is directed at making
the method more efficient.
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