Abstract
This paper describes the challenges involved in arguing the safety of highly automated driving functions which make use of machine learning techniques. An assurance case structure is used to highlight the systems engineering and validation considerations when applying machine learning methods for highly automated driving. Particular focus is placed on addressing functional insufficiencies in the perception functions based on convolutional neural networks and possible types of evidence that can be used to mitigate against such risks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
See https://www.youtube.com/watch?v=u6aEYuemt0M for an introduction.
References
Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete problems in AI safety. arXiv e-prints, June 2016
Attenberg, J., Ipeirotis, P., Provost, F.: Beat the machine: challenging humans to find a predictive model’s “unknown unknowns”. ACM J. Data Inf. Qual. 1(1), 1–17 (2014)
Bergenhem, C., Johansson, R., Söderberg, A., Nilsson, J., Tryggvesson, J., Törngren, M., Ursing, S.: How to reach complete safety requirement refinement for autonomous vehicles. Technical report, CARS 2015 - Critical Automotive applications: Robustness & Safety, September 2015, Paris, France (2015)
Binder, A., Bach, S., Montavon, G., Müller, K.R., Samek, W.: Layer-wise relevance propagation for deep neural network architectures. In: Kim, K., Joukov, N. (eds.) Information Science and Applications (ICISA). LNEE, vol. 376, pp. 913–922. Springer, Singapore (2016). doi:10.1007/978-981-10-0557-2_87
Castelvecchi, D.: Can we open the black box of AI? Nature 538(7623), 20–23 (2016). http://www.nature.com/news/can-we-open-the-black-box-of-ai-1.20731
Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for direct perception in autonomous driving. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2722–2730. IEEE (2015)
Christmann, A., Steinwart, I.: Support Vector Machines. Springer, Heidelberg (2008)
Fawzi, A., Fawzi, O., Frossard, P.: Analysis of classifiers’ robustness to adversarial perturbations. arXiv:1502.02590 (2015)
Feinberg, E.A., Shwartz, A. (eds.): International Series in Operations Research & Management Science, vol. 40. Springer, Heidelberg (2002)
Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29(2), 131–163 (1997)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv:1412.6572 (2015)
Heckemann, K., Gesell, M., Pfister, T., Berns, K., Schneider, K., Trapp, M.: Safe automotive software. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011. LNCS, vol. 6884, pp. 167–176. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23866-6_18
Hendricks, L.A., Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., Darrell, T.: Generating visual explanations. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 3–19. Springer, Cham (2016). doi:10.1007/978-3-319-46493-0_1. http://arxiv.org/abs/1603.08507
IEEE: IEEE standard adoption of ISO/IEC 15026–1 - systems and software engineering - systems and software assurance (2014)
ISO: ISO 26262: Road vehicles - functional safety (2011)
Kaufman, S., Rosset, S., Perlich, C.: Leakage in data mining: Formulation, detection, and avoidance. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 556–563. ACM (2011)
Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? CoRR abs/1703.04977 (2017). http://arxiv.org/abs/1703.04977
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Mohan, N., Törngren, M., Izosimov, V., Kaznov, V., Roos, P., Svahn, J., Gustavsson, J., Nesic, D.: Challenges in architecting fully automated driving; with an emphasis on heavy commercial vehicles. In: 2016 Workshop on Automotive Systems/Software Architectures (2016)
Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, pp. 427–436 (2015)
Piziali, A.: Functional Verification Coverage Measurement and Analysis. Springer, Heidelberg (2008)
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)
Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. arXiv:1608.02192 (2016)
SAE: J3016, taxonomy and definitions for terms related to on-road motor vehicle automated driving systems (2013)
Tas, Ö.S., Kuhnt, F., Zöllner, J.M., Stiller, C.: Functional system architectures towards fully automated driving. In: 2016 IEEE Intelligent Vehicles Symposium. IEEE (2016)
Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V., Young, M., Crespo, J.F. Dennison, D.: Hidden technical debt in machine learning systems. Advances in Neural Information Processing Systems, 28 (NIPS 2015) (2015)
Shalev-Shwartz, S., Shashua, A.: On the sample complexity of end-to-end training vs. semantic abstraction training. In: arXiv:1604.06915 (2016)
Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: arXiv:1312.6034 (2014)
Kelly, T., Weaver, R.: The goal structuring notation - a safety argument notation. In: Proceedings of the DSN 2004 Workshop on Assurance Cases (2004)
Varshney, K.: Engineering safety in machine learning. ArXiv e-prints, January 2016
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Burton, S., Gauerhof, L., Heinzemann, C. (2017). Making the Case for Safety of Machine Learning in Highly Automated Driving. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds) Computer Safety, Reliability, and Security . SAFECOMP 2017. Lecture Notes in Computer Science(), vol 10489. Springer, Cham. https://doi.org/10.1007/978-3-319-66284-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-66284-8_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66283-1
Online ISBN: 978-3-319-66284-8
eBook Packages: Computer ScienceComputer Science (R0)