Skip to main content

Exploiting Non-deterministic Analysis in the Integration of Transient Solution Techniques for Markov Regenerative Processes

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10503))

Included in the following conference series:

Abstract

Transient analysis of Markov Regenerative Processes (MRPs) can be performed through the solution of Markov renewal equations defined by global and local kernels, which respectively characterize the occurrence of regenerations and transient probabilities between them. To derive kernels from stochastic models (e.g., stochastic Petri nets), existing methods exclusively address the case where at most one generally-distributed timer is enabled in each state, or where regenerations occur in a bounded number of events. In this work, we analyze the state space of the underlying timed model to identify epochs between regenerations and apply distinct methods to each epoch depending on the satisfied conditions. For epochs not amenable to existing methods, we propose an adaptive approximation of kernel entries based on partial exploration of the state space, leveraging heuristics that permit to reduce the error on transient probabilities. The case study of a polling system with generally-distributed service times illustrates the effect of these heuristics and how the approach extends the class of models that can be analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amparore, E.G., Buchholz, P., Donatelli, S.: A structured solution approach for Markov regenerative processes. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 9–24. Springer, Cham (2014). doi:10.1007/978-3-319-10696-0_3

    Google Scholar 

  2. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the Solutions of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  3. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets. IEEE Trans. Softw. Eng. 17(3), 259–273 (1991)

    Article  MathSciNet  Google Scholar 

  4. Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verification and evaluation of real-time systems. STTT 12(5), 391–403 (2010)

    Article  Google Scholar 

  5. Çinlar, E.: Markov renewal theory: a survey. Manag. Sci. 21(7), 727–752 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Choi, H., Kulkarni, V.G., Trivedi, K.S.: Markov regenerative stochastic Petri nets. Perform. Eval. 20(1–3), 337–357 (1994)

    Article  MathSciNet  Google Scholar 

  7. Ciardo, G., German, R., Lindemann, C.: A characterization of the stochastic process underlying a stochastic Petri net. IEEE Trans. Softw. Eng. 20(7), 506–515 (1994)

    Article  Google Scholar 

  8. German, R., Lindemann, C.: Analysis of stochastic Petri nets by the method of supplementary variables. Perform. Eval. 20(1), 317–335 (1994)

    Article  MathSciNet  Google Scholar 

  9. German, R., Logothetis, D., Trivedi, K.S.: Transient analysis of Markov regenerative stochastic Petri nets: a comparison of approaches. In: International Workshop on Petri Nets and Performance Models, pp. 103–112. IEEE (1995)

    Google Scholar 

  10. Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-Markovian models using stochastic state classes. Perform. Eval. 69(7–8), 315–335 (2012)

    Article  Google Scholar 

  11. Ibe, O.C., Trivedi, K.S.: Stochastic Petri net models of polling systems. IEEE J. Sel. Areas Commun. 8(9), 1649–1657 (1990)

    Article  Google Scholar 

  12. Kulkarni, V.: Modeling and Analysis of Stochastic Systems. Chapman & Hall, London (1995)

    MATH  Google Scholar 

  13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002). doi:10.1007/3-540-46029-2_13

    Chapter  Google Scholar 

  14. Lime, D., Roux, O.H.: Expressiveness and analysis of scheduling extended time Petri nets. In: IFAC Conference on Fieldbus and their Applications. Elsevier Science (2003)

    Google Scholar 

  15. Lindemann, C., Thümmler, A.: Transient analysis of deterministic and stochastic Petri nets with concurrent deterministic transitions. Perform. Eval. 36–37(1–4), 35–54 (1999)

    Article  MATH  Google Scholar 

  16. Paolieri, M., Horváth, A., Vicario, E.: Probabilistic model checking of regenerative concurrent systems. IEEE Trans. Softw. Eng. 42(2), 153–169 (2016)

    Article  Google Scholar 

  17. Telek, M., Horváth, A.: Transient analysis of Age-MRSPNs by the method of supplementary variables. Perform. Eval. 45(4), 205–221 (2001)

    Article  MATH  Google Scholar 

  18. Vicario, E., Sassoli, L., Carnevali, L.: Using stochastic state classes in quantitative evaluation of dense-time reactive systems. IEEE Trans. Softw. Eng. 35(5), 703–719 (2009)

    Article  Google Scholar 

  19. Zimmermann, A: Modeling and evaluation of stochastic Petri nets with TimeNET 4.1. In: International ICST Conference on Performance Evaluation Methodologies and Tools, pp. 54–63 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Carnevali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Biagi, M., Carnevali, L., Paolieri, M., Papini, T., Vicario, E. (2017). Exploiting Non-deterministic Analysis in the Integration of Transient Solution Techniques for Markov Regenerative Processes. In: Bertrand, N., Bortolussi, L. (eds) Quantitative Evaluation of Systems. QEST 2017. Lecture Notes in Computer Science(), vol 10503. Springer, Cham. https://doi.org/10.1007/978-3-319-66335-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66335-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66334-0

  • Online ISBN: 978-3-319-66335-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics