Abstract
Transient analysis of Markov Regenerative Processes (MRPs) can be performed through the solution of Markov renewal equations defined by global and local kernels, which respectively characterize the occurrence of regenerations and transient probabilities between them. To derive kernels from stochastic models (e.g., stochastic Petri nets), existing methods exclusively address the case where at most one generally-distributed timer is enabled in each state, or where regenerations occur in a bounded number of events. In this work, we analyze the state space of the underlying timed model to identify epochs between regenerations and apply distinct methods to each epoch depending on the satisfied conditions. For epochs not amenable to existing methods, we propose an adaptive approximation of kernel entries based on partial exploration of the state space, leveraging heuristics that permit to reduce the error on transient probabilities. The case study of a polling system with generally-distributed service times illustrates the effect of these heuristics and how the approach extends the class of models that can be analyzed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amparore, E.G., Buchholz, P., Donatelli, S.: A structured solution approach for Markov regenerative processes. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 9–24. Springer, Cham (2014). doi:10.1007/978-3-319-10696-0_3
Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the Solutions of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)
Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets. IEEE Trans. Softw. Eng. 17(3), 259–273 (1991)
Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verification and evaluation of real-time systems. STTT 12(5), 391–403 (2010)
Çinlar, E.: Markov renewal theory: a survey. Manag. Sci. 21(7), 727–752 (1975)
Choi, H., Kulkarni, V.G., Trivedi, K.S.: Markov regenerative stochastic Petri nets. Perform. Eval. 20(1–3), 337–357 (1994)
Ciardo, G., German, R., Lindemann, C.: A characterization of the stochastic process underlying a stochastic Petri net. IEEE Trans. Softw. Eng. 20(7), 506–515 (1994)
German, R., Lindemann, C.: Analysis of stochastic Petri nets by the method of supplementary variables. Perform. Eval. 20(1), 317–335 (1994)
German, R., Logothetis, D., Trivedi, K.S.: Transient analysis of Markov regenerative stochastic Petri nets: a comparison of approaches. In: International Workshop on Petri Nets and Performance Models, pp. 103–112. IEEE (1995)
Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-Markovian models using stochastic state classes. Perform. Eval. 69(7–8), 315–335 (2012)
Ibe, O.C., Trivedi, K.S.: Stochastic Petri net models of polling systems. IEEE J. Sel. Areas Commun. 8(9), 1649–1657 (1990)
Kulkarni, V.: Modeling and Analysis of Stochastic Systems. Chapman & Hall, London (1995)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002). doi:10.1007/3-540-46029-2_13
Lime, D., Roux, O.H.: Expressiveness and analysis of scheduling extended time Petri nets. In: IFAC Conference on Fieldbus and their Applications. Elsevier Science (2003)
Lindemann, C., Thümmler, A.: Transient analysis of deterministic and stochastic Petri nets with concurrent deterministic transitions. Perform. Eval. 36–37(1–4), 35–54 (1999)
Paolieri, M., Horváth, A., Vicario, E.: Probabilistic model checking of regenerative concurrent systems. IEEE Trans. Softw. Eng. 42(2), 153–169 (2016)
Telek, M., Horváth, A.: Transient analysis of Age-MRSPNs by the method of supplementary variables. Perform. Eval. 45(4), 205–221 (2001)
Vicario, E., Sassoli, L., Carnevali, L.: Using stochastic state classes in quantitative evaluation of dense-time reactive systems. IEEE Trans. Softw. Eng. 35(5), 703–719 (2009)
Zimmermann, A: Modeling and evaluation of stochastic Petri nets with TimeNET 4.1. In: International ICST Conference on Performance Evaluation Methodologies and Tools, pp. 54–63 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Biagi, M., Carnevali, L., Paolieri, M., Papini, T., Vicario, E. (2017). Exploiting Non-deterministic Analysis in the Integration of Transient Solution Techniques for Markov Regenerative Processes. In: Bertrand, N., Bortolussi, L. (eds) Quantitative Evaluation of Systems. QEST 2017. Lecture Notes in Computer Science(), vol 10503. Springer, Cham. https://doi.org/10.1007/978-3-319-66335-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-66335-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66334-0
Online ISBN: 978-3-319-66335-7
eBook Packages: Computer ScienceComputer Science (R0)