Skip to main content

A New Theoretical Framework for Curiosity for Learning in Social Contexts

  • Conference paper
  • First Online:
Data Driven Approaches in Digital Education (EC-TEL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10474))

Included in the following conference series:

Abstract

Curiosity is a vital metacognitive skill in educational contexts. Yet, little is known about how social factors influence curiosity in group work. We argue that curiosity is evoked not only through individual, but also interpersonal activities, and present what we believe to be the first theoretical framework that articulates an integrated socio-cognitive account of curiosity based on literature spanning psychology, learning sciences and group dynamics, along with empirical observation of small-group science activity in an informal learning environment. We make a bipartite distinction between individual and interpersonal functions that contribute to curiosity, and multimodal behaviors that fulfill these functions. We validate the proposed framework by leveraging a longitudinal latent variable modeling approach. Findings confirm positive predictive relationship of the latent variables of individual and interpersonal functions on curiosity, with the interpersonal functions exercising a comparatively stronger influence. Prominent behavioral realizations of these functions are also discovered in a data-driven way. This framework is a step towards designing learning technologies that can recognize and evoke curiosity during learning in social contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambady, N., Rosenthal, R.: Thin slices of expressive behavior as predictors of interpersonal consequences: A meta-analysis (1992)

    Google Scholar 

  2. Baltrušaitis, T., Robinson, P., Morency, L.P.: Openface: an open source facial behavior analysis toolkit. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–10. IEEE (2016)

    Google Scholar 

  3. Baranes, A., Oudeyer, P.Y., Gottlieb, J.: Eye movements reveal epistemic curiosity in human observers. Vis. Res. 117, 81–90 (2015)

    Article  Google Scholar 

  4. Berlyne, D.E.: Conflict, Arousal, and Curiosity. McGraw-Hill, New York (1960)

    Book  Google Scholar 

  5. Van den Bossche, P., Gijselaers, W.H., Segers, M., Kirschner, P.A.: Social and cognitive factors driving teamwork in collaborative learning environments: team learning beliefs and behaviors. Small Group Res. 37(5), 490–521 (2006)

    Article  Google Scholar 

  6. Cartwright, D.E., Zander, A.E.: Group Dynamics Research and Theory. Harper & Row, New York (1953)

    Google Scholar 

  7. Cassell, J., Ananny, M., Basu, A., Bickmore, T., Chong, P., Mellis, D., Ryokai, K., Smith, J., Vilhjálmsson, H., Yan, H.: Shared reality: physical collaboration with a virtual peer. In: CHI 2000 Extended Abstracts on Human Factors in Computing systems, pp. 259–260. ACM (2000)

    Google Scholar 

  8. Chi, M.T., Wylie, R.: The ICAP framework: linking cognitive engagement to active learning outcomes. Educ. Psychol. 49(4), 219–243 (2014)

    Article  Google Scholar 

  9. Costikyan, G.: Uncertainty in Games. MIT Press, Cambridge (2013)

    Google Scholar 

  10. Craig, S.D., D’Mello, S., Witherspoon, A., Graesser, A.: Emote aloud during learning with autotutor: applying the facial action coding system to cognitive-affective states during learning. Cogn. Emot. 22(5), 777–788 (2008)

    Article  Google Scholar 

  11. Dörnyei, Z., Murphey, T.: Group dynamics in the language classroom. Ernst Klett Sprachen, Munich (2003)

    Google Scholar 

  12. Driver, C.C., Oud, J.H., Voelkle, M.C.: Continuous time structural equation modelling with R package ctsem. J. Stat. Softw. 77(5) (2017)

    Google Scholar 

  13. Engel, S.: Children’s need to know: curiosity in schools. Harv. Educ. Rev. 81(4), 625–645 (2011)

    Article  Google Scholar 

  14. Förster, J., Strack, F.: Influence of overt head movements on memory for valenced words: a case of conceptual-motor compatibility. J. Pers. Soc. Psychol. 71(3), 421 (1996)

    Article  Google Scholar 

  15. Gatica-Perez, D., McCowan, L., Zhang, D., Bengio, S.: Detecting group interest-level in meetings. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, Proceedings (ICASSP 2005), vol. 1, pp. I-489. IEEE (2005)

    Google Scholar 

  16. Gordon, G., Breazeal, C., Engel, S.: Can children catch curiosity from a social robot?. In: Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, pp. 91–98. ACM (2015)

    Google Scholar 

  17. Grafsgaard, J.F., Boyer, K.E., Phillips, R., Lester, J.C.: Modeling confusion: facial expression, task, and discourse in task-oriented tutorial dialogue. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 98–105. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21869-9_15

    Chapter  Google Scholar 

  18. Jirout, J., Klahr, D.: Children’s scientific curiosity: in search of an operational definition of an elusive concept. Dev. Rev. 32(2), 125–160 (2012)

    Article  Google Scholar 

  19. Johnson, D.W., Johnson, R.T.: Energizing learning: the instructional power of conflict. Educ. Res. 38(1), 37–51 (2009)

    Article  Google Scholar 

  20. Jordan, M.E., McDaniel Jr., R.R.: Managing uncertainty during collaborative problem solving in elementary school teams: the role of peer influence in robotics engineering activity. J. Learn. Sci. 23(4), 490–536 (2014)

    Article  Google Scholar 

  21. Kapur, M., Toh, L.: Learning from productive failure. In: Cho, Y., Caleon, I., Kapur, M. (eds.) Authentic Problem Solving and Learning in the 21st Century. Education Innovation Series, pp. 213–227. Springer, Singapore (2015). doi:10.1007/978-981-287-521-1_12

    Chapter  Google Scholar 

  22. Kashdan, T.B., Fincham, F.D.: Facilitating curiosity: a social and self-regulatory perspective for scientifically based interventions. In: Linley, P.A., Joseph, S. (eds.) Positive Psychology in Practice, pp. 482–503. Wiley, Hoboken (2004)

    Google Scholar 

  23. Keller, J.M.: Strategies for stimulating the motivation to learn. Perform. Improv. 26(8), 1–7 (1987)

    Google Scholar 

  24. Kidd, C., Hayden, B.Y.: The psychology and neuroscience of curiosity. Neuron 88(3), 449–460 (2015)

    Article  Google Scholar 

  25. Kruger, J., Endriss, U., Fernández, R., Qing, C.: Axiomatic analysis of aggregation methods for collective annotation. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent Systems, pp. 1185–1192. International Foundation for Autonomous Agents and Multiagent Systems (2014)

    Google Scholar 

  26. Lai, C., Carletta, J., Renals, S., Evanini, K., Zechner, K.: Detecting summarization hot spots in meetings using group level involvement and turn-taking features. In: INTERSPEECH, pp. 2723–2727 (2013)

    Google Scholar 

  27. Law, E., Yin, M., Goh, J., Chen, K., Terry, M.A., Gajos, K.Z.: Curiosity killed the cat, but makes crowdwork better. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 4098–4110. ACM (2016)

    Google Scholar 

  28. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. ICML 14, 1188–1196 (2014)

    Google Scholar 

  29. Loewenstein, G.: The psychology of curiosity: a review and reinterpretation. Psychol. Bull. 116(1), 75 (1994)

    Article  Google Scholar 

  30. Luce, M.R., Hsi, S.: Science-relevant curiosity expression and interest in science: an exploratory study. Sci. Educ. 99(1), 70–97 (2015)

    Article  Google Scholar 

  31. McDaniel, B., D’Mello, S., King, B., Chipman, P., Tapp, K., Graesser, A.: Facial features for affective state detection in learning environments. In: Proceedings of the Cognitive Science Society, vol. 29 (2007)

    Google Scholar 

  32. Nojavanasghari, B., Baltrušaitis, T., Hughes, C.E., Morency, L.P.: Emoreact: a multimodal approach and dataset for recognizing emotional responses in children. In: Proceedings of the 18th ACM International Conference on Multimodal Interaction, pp. 137–144. ACM (2016)

    Google Scholar 

  33. Ogata, H., Yano, Y.: Combining knowledge awareness and information filtering in an open-ended collaborative learning environment. Int. J. Artif. Intell. Educ. (IJAIED) 11, 33–46 (2000)

    Google Scholar 

  34. Oudeyer, P.Y.: Intelligent adaptive curiosity: a source of self-development (2004)

    Google Scholar 

  35. Parr, J.M., Townsend, M.A.: Environments, processes, and mechanisms in peer learning. Int. J. Educ. Res. 37(5), 403–423 (2002)

    Article  Google Scholar 

  36. Piaget, J.: The Language and Thought of the Child. Psychology Press, Chicago (1959)

    Google Scholar 

  37. Renner, B.: Curiosity about people: the development of a social curiosity measure in adults. J. Pers. Assess. 87(3), 305–316 (2006)

    Article  Google Scholar 

  38. Schuller, B., Müller, R., Eyben, F., Gast, J., Hörnler, B., Wöllmer, M., Rigoll, G., Höthker, A., Konosu, H.: Being bored? recognising natural interest by extensive audiovisual integration for real-life application. Image Vis. Comput. 27(12), 1760–1774 (2009)

    Article  Google Scholar 

  39. Schwartz, D.L., Martin, T.: Inventing to prepare for future learning: the hidden efficiency of encouraging original student production in statistics instruction. Cogn. Instr. 22(2), 129–184 (2004)

    Article  Google Scholar 

  40. Shum, S.B., Crick, R.D.: Learning dispositions and transferable competencies: pedagogy, modelling and learning analytics. In: Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, pp. 92–101. ACM (2012)

    Google Scholar 

  41. Sinha, T., Bai, Z., Cassell, J.: Curious minds wonder alike: studying multimodal behavioral dynamics to design social scaffolding of curiosity. In: Lavoué, É., et al. (eds.) EC-TEL 2017. LNCS, vol. 10474, pp. 270–285. Springer, Cham (2017). doi:10.1007/978-3-319-66610-5_20

    Google Scholar 

  42. Von Stumm, S., Hell, B., Chamorro-Premuzic, T.: The hungry mind: intellectual curiosity is the third pillar of academic performance. Perspect. Psychol. Sci. 6(6), 574–588 (2011)

    Article  Google Scholar 

  43. Wu, Q., Miao, C.: Modeling curiosity-related emotions for virtual peer learners. IEEE Comput. Intell. Mag. 8(2), 50–62 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmay Sinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sinha, T., Bai, Z., Cassell, J. (2017). A New Theoretical Framework for Curiosity for Learning in Social Contexts. In: Lavoué, É., Drachsler, H., Verbert, K., Broisin, J., Pérez-Sanagustín, M. (eds) Data Driven Approaches in Digital Education. EC-TEL 2017. Lecture Notes in Computer Science(), vol 10474. Springer, Cham. https://doi.org/10.1007/978-3-319-66610-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66610-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66609-9

  • Online ISBN: 978-3-319-66610-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics