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Abstract

We study the variant of the stable marriage problem in which the preferences of the agents

are allowed to include indifferences. We present a mechanism for producing Pareto-stable

matchings in stable marriage markets with indifferences that is group strategyproof for one

side of the market. Our key technique involves modeling the stable marriage market as a gen-

eralized assignment game. We also show that our mechanism can be implemented efficiently.

These results can be extended to the college admissions problem with indifferences.
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1 Introduction

The stable marriage problem was first introduced by Gale and Shapley [12]. The stable marriage

market involves a set of men and women, where each agent has ordinal preferences over the agents

of the opposite sex. The goal is to find a disjoint set of man-woman pairs, called a matching, such

that no other man-woman pair prefers each other to their partners in the matching. Such matchings

are said to be stable. When preferences are strict, a unique man-optimal stable matching exists

and can be computed by the man-proposing deferred acceptance algorithm of Gale and Shap-

ley [12]. A mechanism is said to be group strategyproof for the men if no coalition of men can be

simultaneously matched to strictly preferred partners by misrepresenting their preferences. Dubins

and Freedman [7] show that the mechanism that produces man-optimal matchings is group strate-

gyproof for the men when preferences are strict. In our work, we focus on group strategyproofness

for the men, since no stable mechanism is strategyproof for both men and women [18].

We remark that the notion of group strategyproofness used here assumes no side payments

within the coalition of men. It is known that group strategyproofness for the men is impossible for

the stable marriage problem with strict preferences when side payments are allowed [20, Chap. 4].

This notion of group strategyproofness is also different from strong group strategyproofness, in

which at least one man in the coalition gets matched to a strictly preferred partner while the other

men in the coalition get matched to weakly preferred partners. It is known that strong group strat-

egyproofness for the men is impossible for the stable marriage problem with strict preferences [7,

attributed to Gale].

Indifferences in the preferences of agents arise naturally in real-world applications such as

school choice [1, 9, 10]. For the marriage problem with indifferences, Sotomayor [23] argues that

Pareto-stability is an appropriate solution concept. A matching is said to be weakly stable if no

man-woman pair strictly prefers each other to their partners in the matching. A matching is said to

be Pareto-optimal if there is no other matching that is strictly preferred by some agent and weakly

preferred by all agents. If a matching is both weakly stable and Pareto-optimal, it is said to be

Pareto-stable.

Weakly stable matchings, unlike strongly stable or super-stable matchings [13], always exist.

However, not all weakly stable matchings are Pareto-optimal [23]. Pareto-stable matchings can

be obtained by applying successive Pareto-improvements to weakly stable matchings. Erdil and

Ergin [9, 10] show that this procedure can be carried out efficiently. Pareto-stable matchings also

exist and can be computed in strongly polynomial time for many-to-many matchings [2] and multi-

unit matchings [3]. Instead of using the characterization of Pareto-improvement chains and cycles,

Kamiyama [14] gives another efficient algorithm for many-to-many matchings based on rank-

maximal matchings. However, none of these mechanisms addresses strategyproofness.

We remark that the notion of Pareto-optimality here is different from man-Pareto-optimality,

which only takes into account the preferences of the men. It is known that man-Pareto-optimality

is not compatible with strategyproofness for the stable marriage problem with indifferences [9,

15]. The notion of Pareto-optimality here is also different from Pareto-optimality in expected

utility, which permits Pareto-domination by non-pure outcomes. A result of Zhou [24] implies

that Pareto-optimality in expected utility is not compatible with strategyproofness for the stable

marriage problem with indifferences.

Until recently, it was not known whether a strategyproof Pareto-stable mechanism exists. In

our recent workshop paper [6], we present a generalization of the deferred acceptance mechanism
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that is Pareto-stable and strategyproof for the men. If the market has n agents, our implemen-

tation of this mechanism runs in O(n4) time, matching the time bound of the algorithm of Erdil

and Ergin [9, 10]1. The proof of strategyproofness relies on reasoning about a certain threshold

concept in the stable marriage market, and this approach seems difficult to extend to address group

strategyproofness.

In this paper, we introduce a new technique useful for investigating incentive compatibility for

coalitions of men. We present a Pareto-stable mechanism for the stable marriage problem with

indifferences that is provably group strategyproof for the men, by modeling the stable marriage

market as an appropriate form of the generalized assignment game. In Sect. 4 and App. B and C, we

show that this mechanism coincides with the generalization of the deferred acceptance mechanism

presented in [6]. Thus we obtain an O(n4)-time group strategyproof Pareto-stable mechanism.

The generalized assignment game. The assignment game, introduced by Shapley and Shu-

bik [21], involves a two-sided matching market with monetary transfer in which agents have unit-

slope linear utility functions. This model has been generalized to allow agents to have continuous,

invertible, and increasing utility functions [4, 5, 17]. Some models that generalize both the as-

signment game and the stable marriage problems have also been developed, but their models are

not concerned with the strategic behavior of agents [11, 22]. The formulation of the generalized

assignment game in this paper follows the presentation of Demange and Gale [5].

In their paper, Demange and Gale establish various elegant properties of the generalized as-

signment game, such as the lattice property and the existence of one-sided optimal outcomes.

(One-sided optimality or man-optimality is a stronger notion than one-sided Pareto-optimality or

man-Pareto-optimality.) These properties are known to hold for the stable marriage market in the

case of strict preferences [16, attributed to Conway], but fail in the case of weak preferences [20,

Chap. 2]. Given the similarities between stable marriage markets and generalized assignment

games, it is natural to ask whether stable marriage markets can be modeled as generalized as-

signment games. Demange and Gale discuss this question and state that “the model of [Gale and

Shapley] is not a special case of our model”. The basic obstacle is that it is unclear how to model

an agent’s preferences within the framework of a generalized assignment game: on the one hand,

even though ordinal preferences can be converted into numeric utility values, such preferences are

expressed in a manner that is independent of any monetary transfer; on the other hand, the frame-

work demands that there is an amount of money that makes an agent indifferent between any two

agents on the other side of the market.

In Sect. 2, we review key concepts in the work of Demange and Gale, and introduce the tiered-

slope market as a special form of the generalized assignment game in which the slopes of the

utility functions are powers of a large fixed number. Then, in Sect. 3, we describe our approach

for converting a stable marriage market with indifferences into an associated tiered-slope market.

While these are both two-sided markets that involve the same set of agents, the utilities achieved

under an outcome in the associated tiered-slope market may not be equal to the utilities under a

corresponding solution in the stable marriage market. Nevertheless, we are able to establish useful

1 The algorithm of Erdil and Ergin proceeds in two phases. In the first phase, ties are broken arbitrarily and the

deferred acceptance algorithm is used to obtain a weakly stable matching. In the second phase, a sequence of Pareto-

improvements are applied until a Pareto-stable matching is reached. In App. A in the full version of [6], we show that

this algorithm does not provide a strategyproof mechanism.
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relationships between certain sets of solutions to these two markets.

Our first such result, Theorem 2, shows that Pareto-stability in the stable marriage market with

indifferences follows from stability in the associated tiered-slope market, even though it does not

follow from weak stability in the stable marriage market with indifferences. This can be seen

as a partial analogue to the case of strict preferences, in which stability in the stable marriage

market implies Pareto-stability [12]. This also demonstrates that, in addition to using the deferred

acceptance procedure to solve the generalized assignment game [4], we can use the generalized

assignment game to solve the stable marriage problem with indifferences.

In Lemma 5, we establish that the utility achieved by any man in a man-optimal solution to

the associated tiered-slope market uniquely determines the tier of preference to which that man

is matched in the stable marriage market with indifferences. Another consequence of this lemma

is that any matched man in a man-optimal outcome of the associated tiered-slope market receives

at least one unit of money from his partner. We can then deduce that if a man strictly prefers his

partner to a woman, then the woman has to offer a large amount of money in order for the man to

be indifferent between her offer and that of his partner. Since individual rationality prevents any

woman from offering such a large amount of money, this explains how we overcome the obstacle of

any man being matched with a less preferred woman in exchange for a sufficiently large payment.

A key result established by Demange and Gale is that the man-optimal mechanism is group

strategyproof for the men. Using this result and Lemma 5, we are able to show in Theorem 3 that

group strategyproofness for the men in the stable marriage market with indifferences is achieved

by man-optimality in the associated tiered-slope market, even though it is incompatible with man-

Pareto-optimality in the stable marriage market with indifferences [9, 15]. This can be seen as a

partial analogue to the case of strict preferences, in which man-optimality implies group strate-

gyproofness [7].

Extending to the college admissions problem. We also consider the settings of incomplete pref-

erence lists and one-to-many matchings, in which efficient Pareto-stable mechanisms are known

to exist [2, 3, 9, 10, 14]. Preference lists are incomplete when an agent declares another agent of

the opposite sex to be unacceptable. Our mechanism is able to support such incomplete preference

lists through an appropriate choice of the reserve utilities of the agents in the associated tiered-

slope market. In fact, our mechanism also supports indifference between being unmatched and

being matched to some partner.

The one-to-many variant of the stable marriage problem with indifferences is the college ad-

missions problem with indifferences. In this model, students and colleges play the roles of men and

women, respectively, and colleges are allowed to be matched with multiple students, up to their

capacities. We provide the formal definition of the model in App. D. By a simple reduction from

college admissions markets to stable marriage markets, our mechanism is group strategyproof for

the students2 and produces a Pareto-stable matching in polynomial time.

Organization of this paper. In Sect. 2, we review the generalized assignment game and define

the tiered-slope market. In Sect. 3, we introduce the tiered-slope markets associated with the stable

marriage markets with indifferences, and use them to obtain a group strategyproof, Pareto-stable

2A stable mechanism can be strategyproof only for the side having unit demand, namely the students [19].
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mechanism. In Sect. 4 and App. B and C, we discuss efficient implementations of the mechanism

and its relationship with the generalization of the deferred acceptance algorithm presented in [6].

2 Tiered-Slope Market

The generalized assignment game studied by Demange and Gale [5] involves two disjoint sets I
and J of agents, which we call men and women respectively. We assume that the sets I and J
do not contain the element 0, which we use to denote being unmatched. For each man i ∈ I and

woman j ∈ J , the compensation function fi,j(ui) represents the compensation that man i needs to

receive in order to attain utility ui when he is matched to woman j. Similarly, for each man i ∈ I
and woman j ∈ J , the compensation function gi,j(vj) represents the compensation that woman j
needs to receive in order to attain utility vj when she is matched to man i. Moreover, each man

i ∈ I has a reserve utility ri and each woman j ∈ J has a reserve utility sj.

In this paper, we assume that the compensation functions are of the form

fi,j(ui) = uiλ
−ai,j and gi,j(vj) = vj − (bi,jN + πi)

and the reserve utilities are of the form

ri = πiλ
ai,0 and sj = b0,jN,

where

π ∈ Z
I ; N ∈ Z; λ ∈ Z; a ∈ Z

I×(J∪{0}); b ∈ Z
(I∪{0})×J

such that

N > max
i∈I

πi ≥ min
i∈I

πi ≥ 1

and

λ ≥ max
(i,j)∈(I∪{0})×J

(bi,j + 1)N ≥ min
(i,j)∈(I∪{0})×J

(bi,j + 1)N ≥ N.

We denote this tiered-slope market as M = (I, J, π,N, λ, a, b). When ai,j = 0 for every man

i ∈ I and woman j ∈ J ∪ {0}, this becomes a unit-slope market (I, J, π,N, λ, 0, b). Notice that

the compensation functions in a unit-slope market coincide with those in the assignment game [21]

where buyer j ∈ J has a valuation of bi,jN + πi on house i ∈ I . For better readability, we write

expλ(ξ) to denote λξ.

A matching is a function µ : I → J ∪ {0} such that for any woman j ∈ J , we have µ(i) = j
for at most one man i ∈ I . Given a matching µ and a woman j ∈ J , we denote

µ(j) =







i if µ(i) = j

0 if there is no man i ∈ I such that µ(i) = j

An outcome is a triple (µ, u, v), where µ is a matching, u ∈ R
I is the utility vector of the men,

and v ∈ R
J is the utility vector of the women. An outcome (µ, u, v) is feasible if the following

conditions hold for every man i ∈ I and woman j ∈ J .

1. If µ(i) = j, then fi,j(ui) + gi,j(vj) ≤ 0.
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2. If µ(i) = 0, then ui = ri.

3. If µ(j) = 0, then vj = sj.

A feasible outcome (µ, u, v) is individually rational if ui ≥ ri and vj ≥ sj for every man i ∈ I
and woman j ∈ J . An individually rational outcome (µ, u, v) is stable if fi,j(ui) + gi,j(vj) ≥ 0 for

every man i ∈ I and woman j ∈ J .

A stable outcome (µ, u, v) is man-optimal if for any stable outcome (µ′, u′, v′) we have ui ≥ u′
i

for every man i ∈ I . It has been shown that man-optimal outcomes always exist [5, Property 2].

Theorem 1 below provides a useful group strategyproofness result for man-optimal outcomes.

Theorem 1. Let (µ, u, v) and (µ′, u′, v′) be man-optimal outcomes of tiered-slope markets (I, J, π,
N, λ, a, b) and (I, J, π,N, λ, a′, b), respectively. If a 6= a′, then there exists a man i0 ∈ I and a

woman j0 ∈ J ∪ {0} with ai0,j0
6= a′

i0,j0
such that ui0

≥ u′
i0

expλ(ai0,µ′(i0) − a
′
i0,µ′(i0)).

Proof. This follows directly from [5, Theorem 2], which establishes group strategyproofness for

the men in the generalized assignment game with no side payments. Notice that the value

u′
i0

expλ(ai0,µ′(i0) − a′
i0,µ′(i0)) is the true utility of man i0 under matching µ′ as defined in their

paper, both in the case of being matched to µ′(i0) 6= 0 with compensation u′
i0

expλ(−a′
i0,µ′(i0)) and

in the case of being unmatched.

3 Stable Marriage with Indifferences

The stable marriage market involves a set I of men and a set J of women. We assume that the sets

I and J are disjoint and do not contain the element 0, which we use to denote being unmatched.

The preference relation of each man i ∈ I is specified by a binary relation �i over J ∪ {0} that

satisfies transitivity and totality. To allow indifferences, the preference relation is not required to

satisfy anti-symmetry. Similarly, the preference relation of each woman j ∈ J is specified by a

binary relation�j over I∪{0} that satisfies transitivity and totality. We denote this stable marriage

market as (I, J, (�i)i∈I , (�j)j∈J).
A matching is a function µ : I → J ∪ {0} such that for any woman j ∈ J , we have µ(i) = j

for at most one man i ∈ I . Given a matching µ and a woman j ∈ J , we denote

µ(j) =







i if µ(i) = j

0 if there is no man i ∈ I such that µ(i) = j

A matching µ is individually rational if j �i 0 and i �j 0 for every man i ∈ I and woman j ∈ J
such that µ(i) = j. An individually rational matching µ is weakly stable if for any man i ∈ I
and woman j ∈ J , either µ(i) �i j or µ(j) �j i. (Otherwise, such a man i and woman j form a

strongly blocking pair.)

For any matchings µ and µ′, we say that the binary relation µ � µ′ holds if µ(i) �i µ
′(i) and

µ(j) �j µ
′(j) for every man i ∈ I and woman j ∈ J . A weakly stable matching µ is Pareto-stable

if for any matching µ′ such that µ′ � µ, we have µ � µ′. (Otherwise, the matching µ is not

Pareto-optimal because it is Pareto-dominated by the matching µ′.)

A mechanism is an algorithm that, given a stable marriage market (I, J, (�i)i∈I , (�j)j∈J), pro-

duces a matching µ. A mechanism is said to be group strategyproof (for the men) if for any two
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different preference profiles (�i)i∈I and (�′
i)i∈I , there exists a man i0 ∈ I with preference relation

�i0
different from �′

i0
such that µ(i0) �i0

µ′(i0), where µ and µ′ are the matchings produced

by the mechanism given (I, J, (�i)i∈I , (�j)j∈J) and (I, J, (�′
i)i∈I , (�j)j∈J) respectively. (Such

a man i0 belongs to the coalition but is not matched to a strictly preferred woman by expressing

preference relation �′
i0

instead of his true preference relation �i0
.)

3.1 The Associated Tiered-Slope Market

We construct the tiered-slope market M = (I, J, π,N, λ, a, b) associated with stable marriage

market (I, J, (�i)i∈I , (�j)j∈J) as follows. We take N ≥ |I| + 1 and associate with each man

i ∈ I a fixed and distinct priority πi ∈ {1, 2, . . . , |I|}. We convert the preference relations (�i)i∈I

of the men to integer-valued (non-transferable) utilities a ∈ Z
I×(J∪{0}) such that for every man

i ∈ I and women j1, j2 ∈ J ∪ {0}, we have j1 �i j2 if and only if ai,j1
≥ ai,j2

. Similarly, we

convert the preference relations (�j)j∈J of the women to integer-valued (non-transferable) utilities

b ∈ Z
(I∪{0})×J such that for every woman j ∈ J and men i1, i2 ∈ I ∪ {0}, we have i1 �j i2 if and

only if bi1,j ≥ bi2,j ≥ 0. Finally, we take

λ = max
i∈I∪{0}

j∈J

(bi,j + 1)N.

In order to achieve group strategyproofness, we require that N and π should not depend on

the preferences (�i)i∈I of the men. We further require that b does not depend on the preferences

(�i)i∈I of the men, and that ai0,j0
does not depend on the other preferences (�i)i∈I\{i0} for any

man i0 ∈ I and woman j0 ∈ J ∪ {0}. In other words, a man i0 ∈ I is only able to manipulate his

own utilities (ai0,j)j∈J∪{0}. One way to satisfy these conditions is by taking ai0,j0
to be the number

of women j ∈ J∪{0} such that j0 �i0
j for every man i0 ∈ I and woman j0 ∈ J∪{0}, and taking

bi0,j0
to be the number of men i ∈ I ∪{0} such that i0 �j0

i for every man i0 ∈ I ∪{0} and woman

j0 ∈ J . (These conditions are not used until Sect. 3.3, where we prove group strategyproofness.)

Intuitively, each woman has a compensation function with the same form as a buyer in the

assignment game [21]. The valuation bi,jN + πi that woman j assigns to man i has a first-order

dependence on the preferences over the men and a second-order dependence on the priorities of

the men, which are used to break any ties in her preferences. From the perspective of man i, if he

highly prefers a woman j, he assigns a large exponent ai,j in the slope associated with woman j,
and thus expects only a small amount of compensation.

3.2 Pareto-Stability

In this subsection, we study the Pareto-stability of matchings in the stable marriage market that

correspond to stable outcomes in the associated tiered-slope market. We first show that individual

rationality in the associated tiered-slope market implies individual rationality in the stable marriage

market (Lemmas 1 and 2). Then, we show that stability in the associated tiered-slope market

implies weak stability in the stable marriage market (Lemma 3). Finally, we show that stability

in the associated tiered-slope market is sufficient for Pareto-stability in the stable marriage market

(Lemma 4 and Theorem 2). The proof of Lemma 4 is given in App. A.
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Lemma 1. Let (µ, u, v) be an individually rational outcome in tiered-slope marketM = (I, J, π,N,
λ, a, b). Let i ∈ I be a man and j ∈ J be a woman. Then

0 < expλ(ai,0) ≤ ui < expλ(ai,µ(i) + 1) and 0 ≤ b0,jN ≤ vj < (bµ(j),j + 1)N.

Proof. The lower bounds

ui ≥ πi expλ(ai,0) ≥ expλ(ai,0) > 0 and vj ≥ b0,jN ≥ 0

follow directly from individual rationality. If µ(i) = 0, then feasibility implies

ui = πi expλ(ai,0) < expλ(ai,0 + 1).

If µ(j) = 0, then feasibility implies

vj = b0,jN < (b0,j + 1)N.

It remains to show that the upper bounds hold when µ(i) 6= 0 and µ(j) 6= 0. Without loss of

generality, we may assume that µ(i) = j, so feasibility implies

ui expλ(−ai,j)− (bi,jN + πi − vj) ≤ 0.

Since ui ≥ 0 and vj ≥ 0, we have

ui expλ(−ai,j)− (bi,jN + πi) ≤ 0 and − (bi,jN + πi − vj) ≤ 0.

Since πi < N and bi,jN + πi < λ, we have

ui expλ(−ai,j)− λ < 0 and − (bi,jN +N − vj) < 0.

Thus ui < expλ(ai,µ(i) + 1) and vj < (bµ(j),j + 1)N .

Lemma 2 (Individual Rationality). Let (µ, u, v) be an individually rational outcome in the tiered-

slope marketM = (I, J, π,N, λ, a, b) associated with stable marriage market (I, J, (�i)i∈I , (�j)j∈J).
Then µ is an individually rational matching in the stable marriage market.

Proof. Let i ∈ I be a man and j ∈ J be a woman. Then, by Lemma 1, we have

expλ(ai,0) < expλ(ai,µ(i) + 1) and b0,jN < (bµ(j),j + 1)N.

Thus ai,µ(i) + 1 > ai,0 and bµ(j),j + 1 > b0,j , and hence ai,µ(i) ≥ ai,0 and bµ(j),j ≥ b0,j . We conclude

that µ(i) �i 0 and µ(j) �j 0.

Lemma 3 (Stability). Let (µ, u, v) be a stable outcome in the tiered-slope marketM = (I, J, π,N,
λ, a, b) associated with stable marriage market (I, J, (�i)i∈I , (�j)j∈J). Then µ is a weakly stable

matching in the stable marriage market.
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Proof. Since the outcome (µ, u, v) is individually rational in marketM, Lemma 2 implies that the

matching µ is individually rational in the stable marriage market. It remains to show that there is

no strongly blocking pair.

For the sake of contradiction, suppose there exists a man i ∈ I and a woman j ∈ J such that

neither µ(i) �i j nor µ(j) �j i. Then ai,j > ai,µ(i) and bi,j > bµ(j),j . Hence ai,j ≥ ai,µ(i) + 1 and

bi,j ≥ bµ(j),j + 1. Since (µ, u, v) is a stable outcome inM, we have

0 ≤ ui expλ(−ai,j)− (bi,jN + πi − vj)

< expλ(ai,µ(i) + 1) expλ(−ai,j)− (bi,jN + πi − (bµ(j),j + 1)N)

≤ 1− πi,

where the second inequality follows from Lemma 1. Thus, πi < 1, a contradiction.

Lemma 4. Let (µ, u, v) be a stable outcome in the tiered-slope marketM = (I, J, π,N, λ, a, b).
Let µ′ be an arbitrary matching. Then

∑

i∈I

(

ui expλ(−ai,µ′(i))− πi

)

≥
∑

j∈J

(

bµ′(j),jN − vj

)

.

Furthermore, the inequality is tight if and only if the outcome (µ′, u, v) is stable.

Theorem 2 (Pareto-stability). Let (µ, u, v) be a stable outcome in the tiered-slope marketM =
(I, J, π,N, λ, a, b) associated with stable marriage market (I, J, (�i)i∈I , (�j)j∈J). Then µ is a

Pareto-stable matching in the stable marriage market.

Proof. Since the outcome (µ, u, v) is stable in market M, Lemma 3 implies that the matching

µ is weakly stable in the stable marriage market. It remains to show that the matching µ is not

Pareto-dominated.

Let µ′ be a matching of the stable marriage market such that µ′ � µ. Then µ′(i) �i µ(i) and

µ′(j) ≥j µ(j) for every man i ∈ I and woman j ∈ J . Hence ai,µ′(i) ≥ ai,µ(i) and bµ′(j),j ≥ bµ(j),j

for every man i ∈ I and woman j ∈ J . Since ai,µ′(i) ≥ ai,µ(i) for every man i ∈ I , we have

∑

i∈I

(

ui expλ(−ai,µ′(i))− πi

)

≤
∑

i∈I

(

ui expλ(−ai,µ(i))− πi

)

.

Applying Lemma 4 to both sides, we get

∑

j∈J

(

bµ′(j),jN − vj

)

≤
∑

j∈J

(

bµ(j),jN − vj

)

.

Since bµ′(j),j ≥ bµ(j),j for every woman j ∈ J , the inequalities are tight. Hence ai,µ′(i) = ai,µ(i) and

bµ′(j),j = bµ(j),j for every man i ∈ I and woman j ∈ J . Thus µ(i) �i µ
′(i) and µ(j) �j µ

′(j) for

every man i ∈ I and woman j ∈ J . We conclude that µ � µ′.
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3.3 Group Strategyproofness

In this subsection, we study the group strategyproofness of matchings in the stable marriage market

that correspond to man-optimal outcomes in the associated tiered-slope market. We first show that

the utilities of the men in man-optimal outcomes in the associated tiered-slope market reflect the

utilities of the men in the stable marriage market (Lemma 5). Then we prove group strategyproof-

ness in the stable marriage market using group strategyproofness in the associated tiered-slope

market (Theorem 3).

Lemma 5. Let (µ, u, v) be a man-optimal outcome in the tiered-slope market M = (I, J, π,
N, λ, a, b) associated with stable marriage market (I, J, (�i)i∈I , (�j)j∈J). Then expλ(ai,µ(i)) ≤
ui < expλ(ai,µ(i) + 1) for every man i ∈ I .

The proof of Lemma 5 is given in App. A. Since the compensation received by a man i ∈ I
matched with a woman µ(i) 6= 0 is given by ui expλ(−ai,µ(i)), Lemma 5 implies that the amount of

compensation in man-optimal outcomes is at least 1 and less than λ. In fact, no woman is willing

to pay λ or more under any individual rational outcome.

Theorem 3 (Group strategyproofness). If a mechanism produces matchings that correspond to

man-optimal outcomes of the tiered-slope markets associated with the stable marriage markets,

then it is group strategyproof and Pareto-stable.

Proof. We have shown Pareto-stability in the stable marriage market in Theorem 2. It remains

only to show group strategyproofness.

Let (I, J, (�i)i∈I , (�j)j∈J) and (I, J, (�′
i)i∈I , (�j)j∈J) be stable marriage markets where (�i)i∈I

and (�′
i)i∈I are different preference profiles. Let (I, J, π,N, λ, a, b) and (I, J, π,N, λ, a′, b) be

the tiered-slope markets associated with stable marriage markets (I, J, (�i)i∈I , (�j)j∈J) and (I, J,
(�′

i)i∈I , (�j)j∈J), respectively. Let (µ, u, v) and (µ′, u′, v′) be man-optimal outcomes of the tiered-

slope markets (I, J, π,N, λ, a, b) and (I, J, π,N, λ, a′, b), respectively.

Since the preference profiles (�i)i∈I and (�′
i)i∈I are different, we have a 6= a′. So, by The-

orem 1, there exists a man i0 ∈ I and a woman j0 ∈ J ∪ {0} with ai0,j0
6= a′

i0,j0
such that

ui0
≥ u′

i0
expλ(ai0,µ′(i0) − a

′
i0,µ′(i0)). Hence

expλ(ai0,µ(i0) + 1) > ui0

≥
u′

i0

expλ(a′
i0,µ′(i0))

expλ(ai0,µ′(i0))

≥ expλ(ai0,µ′(i0)),

where the first and third inequalities follow from Lemma 5. This shows that ai0,µ(i0) +1 > ai0,µ′(i0).

Hence ai0,µ(i0) ≥ ai0,µ′(i0), and we conclude that µ(i0) �i0
µ′(i0). Also, since ai0,j0

6= a′
i0,j0

, the

preference relations �i0
and �′

i0
are different. Therefore, the mechanism is group strategyproof.

4 Efficient Implementation

The implementation of our group strategyproof Pareto-stable mechanism for stable marriage with

indifferences amounts to computing a man-optimal outcome for the associated tiered-slope market.
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Since all utility functions in the tiered-slope market are linear functions, we can perform this

computation using the algorithm of Dütting et al. [8], which was developed for multi-item auctions.

If we model each woman j as a non-dummy item in the multi-item auction with price given by

utility vj , then the utility function of each man on each non-dummy item is a linear function of the

price with a negative slope. Using the algorithm of Dütting et al., we can compute a man-optimal

(envy-free) outcome using O(n5) arithmetic operations, where n is the total number of agents.

Since poly(n) precision is sufficient, our mechanism admits a polynomial-time implementation.

For the purpose of solving the stable marriage problem, it is actually sufficient for a mechanism

to produce the matching without the utility vectors u and v of the associated tiered-slope market.

In App. B and C, we show that the generalization of the deferred acceptance algorithm presented

in [6] can be used to compute a matching that corresponds to a man-optimal outcome for the

associated tiered-slope markets. The proof of Theorem 4 is given in App. C.3.

Theorem 4. There exists an O(n4)-time algorithm that corresponds to a group strategyproof

Pareto-stable mechanism for the stable marriage market with indifferences, where n is the total

number of men and women.
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A Details of the Tiered-Slope Market

Proof of Lemma 4. Since (µ, u, v) is a stable outcome in marketM, the following conditions hold.

1. ui expλ(−ai,µ′(i)) ≥ bi,µ′(i)N + πi − vµ′(i) for every man i ∈ I such that µ′(i) 6= 0.

2. ui ≥ πi expλ(ai,0) for every man i ∈ I such that µ′(i) = 0.

3. vj ≥ b0,jN for every woman j ∈ J such that µ′(j) = 0.

Hence, we have

∑

i∈I

(

ui expλ(−ai,µ′(i))− πi

)

=
∑

i∈I
µ′(i)6=0

(

ui expλ(−ai,µ′(i))− πi

)

+
∑

i∈I
µ′(i)=0

(

ui expλ(−ai,0)− πi

)

≥
∑

i∈I
µ′(i)6=0

(

ui expλ(−ai,µ′(i))− πi

)

≥
∑

i∈I
µ′(i)6=0

(

bi,µ′(i)N − vµ′(i)

)

=
∑

j∈J
µ′(j)6=0

(

bµ′(j),jN − vj

)

=
∑

j∈J

(

bµ′(j),jN − vj

)

−
∑

j∈J
µ′(j)=0

(

b0,jN − vj

)

≥
∑

j∈J

(

bµ′(j),jN − vj

)

,

where the three inequalities follow from conditions 2, 1, and 3, respectively.

Furthermore, if the outcome (µ′, u, v) is stable, then conditions 1, 2, and 3 are all tight. Hence,

the inequality in the lemma statement is also tight.

Conversely, if the inequality in the lemma statement is tight, then conditions 1, 2, and 3 are all

tight. Hence, the outcome (µ′, u, v) is feasible. So, the stability of outcome (µ′, u, v) follows from

the stability of outcome (µ, u, v).

We now introduce two lemmas that are useful for proving Lemma 5: Lemma 6 is used to prove

Lemma 7; Lemma 7 is used to prove both Lemma 5 and Lemma 20 of App. C.3.

Lemma 6. LetM be a tiered-slope market (I, J, π,N, λ, a, b) and letM′ be a market that is equal

toM except that the reserve utilities of the men may differ. Let (µ, u, v) be a man-optimal outcome

ofM′. Let J1 ⊆ J be a nonempty subset such that vj 6= sj = b0,jN for every woman j ∈ J1. Then,

there exists a man i0 ∈ I and a woman j1 ∈ J1 such that µ(i0) /∈ J1 and fi0,j1
(ui0

) + gi0,j1
(vj1

) =
ui0

expλ(−ai0,j1
)− (bi0,j1

N + πi0
− vj1

) = 0.
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Proof. This follows directly from [5, Lemma 4], which shows the existence of a compatible pair

(i0, j1).

Lemma 7. LetM = (I, J, π,N, λ, a, b) be the tiered-slope market associated with stable marriage

market (I, J, (�i)i∈I , (�j)j∈J), and let r denote the reserve utility vector of the men inM. Let r′

be a reserve utility vector of the men such that the following conditions hold: (i) r′ ≥ r; (ii) for

any man i and any integer k, either r′
i expλ(k) is an integer or 0 < r′

i expλ(k) < 1. Let M′ be

the market that is equal toM except that the reserve utilities of the men are given by r′, and let

(µ, u, v) be a man-optimal outcome inM′. Then expλ(ai,µ(i)) ≤ ui for every man i ∈ I .

Proof. First observe that the individual rationality of (u, v) and condition (i) imply ui ≥ r′
i ≥ ri >

0 for each man i. The individual rationality of (u, v) also implies vj ≥ b0,jN ≥ 0 for each woman

j. Let I0 = {i ∈ I : ui < expλ(ai,µ(i))}. For the sake of contradiction, suppose I0 is nonempty. Let

J0 = {j ∈ J : j = µ(i) for some man i ∈ I0}. Notice that for every man i ∈ I0, we have µ(i) 6= 0,

for otherwise ui = r′
i ≥ ri = πi expλ(ai,0) ≥ expλ(ai,0) by feasibility. Thus J0 is nonempty.

Let J1 = {j ∈ J : 0 < γN + πi − vj < 1 for some man i ∈ I0 and γ ∈ Z such that γ ≥ 0}.
Notice that for every man i ∈ I0 and woman j ∈ J0 such that j = µ(i), we have

0 < bi,jN + πi − vj < 1

because individual rationality, condition (i), and the definition of I0 imply that

0 < ui expλ(−ai,j) < 1,

and feasibility and stability imply that

ui expλ(−ai,j) = bi,jN + πi − vj.

Thus J0 ⊆ J1. Also, for every woman j ∈ J1, we have vj 6= b0,jN by a simple non-integrality

argument.

Therefore, by Lemma 6, there exists a man i0 ∈ I and a woman j1 ∈ J1 such that µ(i0) /∈ J1

and

ui0
expλ(−ai0,j1

) = bi0,j1
N + πi0

− vj1
. (1)

Since j1 ∈ J1, there exists i1 ∈ I0 and γ1 ∈ Z such that γ1 ≥ 0 and

0 < γ1N + πi1
− vj1

< 1. (2)

Let j0 = µ(i0). We have

ui0
=







(bi0,j0
N + πi0

− vj0
) expλ(ai0,j0

) if j0 6= 0

r′
i0

if j0 = 0
(3)

since the outcome (µ, u, v) is stable. We consider two cases.

Case 1: j0 = 0. Combining (1), (2), and (3), we get

0 < (γ1 − bi0,j1
)N + (πi1

− πi0
) + r′

i0
expλ(−ai0,j1

) < 1. (4)
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Let ∆ denote r′
i0

expλ(−ai0,j1
). By a simple non-integrality argument, we deduce that ∆ is not an

integer. Then, by condition (ii) of the lemma, we have 0 < ∆ < 1. Since (4) implies that

0 < (γ1 − bi0,j1
)N + (πi1

− πi0
) + ∆ < 1

and since 0 < ∆ < 1, we have γ1 = bi0,j1
and πi1

= πi0
. Thus i1 = i0 by the distinctness of π.

Since i0 = i1 ∈ I0 and µ(i) 6= 0 for every man i ∈ I0 by our previous remark, we deduce that

µ(i0) 6= 0. This contradicts µ(i0) = j0 = 0.

Case 2: µ(i0) 6= 0. Combining (1), (2), and (3), we get

0 < (γ1 − bi0,j1
)N + (πi1

− πi0
) + (bi0,j0

N + πi0
− vj0

) expλ(ai0,j0
− ai0,j1

) < 1. (5)

We consider three subcases.

Case 2.1: ai0,j0
≤ ai0,j1

− 1. Let ∆ = (bi0,j0
N + πi0

− vj0
) expλ(ai0,j0

− ai0,j1
). Notice that

∆ ≤ (bi0,j0
N + πi0

− vj0
)λ−1 ≤ (bi0,j0

N + πi0
− 0)λ−1 < 1,

where the second inequality follows from individual rationality and

∆ = ui0
expλ(−ai0,j1

) > 0,

where the inequality follows from individual rationality and condition (i). Since (5) implies

0 < (γ1 − bi0,j1
)N + (πi1

− πi0
) + ∆ < 1

and 0 < ∆ < 1, we have γ1 = bi0,j1
and πi1

= πi0
. Thus i1 = i0 by the distinctness of π. Since

i0 = i1 ∈ I0, we have µ(i0) ∈ J0 ⊆ J1, which is a contradiction.

Case 2.2: ai0,j0
= ai0,j1

. Substituting into (5), we get

0 < (γ1 − bi0,j1
+ bi0,j0

)N + πi1
− vj0

< 1. (6)

This shows that

γ1 − bi0,j1
+ bi0,j0

≤ −1, (7)

for otherwise µ(i0) = j0 ∈ J1. Combining (7) with the lower bound in (6), we get

0 < −N + πi1
− vj0

< −vj0
,

which contradicts the lower bound vj0
≥ 0 implied by individual rationality.

Case 2.3: ai0,j0
≥ ai0,j1

+ 1. The upper bound in (5) gives

bi0,j0
N + πi0

− vj0
< ((bi0,j1

− γ1)N + πi0
− πi1

+ 1) expλ(ai0,j1
− ai0,j0

)

≤ ((bi0,j1
− 0)N + πi0

− 1 + 1) expλ(−1)

= (bi0,j1
N + πi0

)λ−1

< 1.

This shows that

bi0,j0
N + πi0

− vj0
≤ 0, (8)

for otherwise µ(i0) = j0 ∈ J1. Combining (8) with (3), we get

ui0
expλ(−ai0,j0

) ≤ 0,

which contradicts the lower bound ui0
> 0 implied by individual rationality and condition (i).

Proof of Lemma 5. Since the outcome (µ, u, v) is individually rational in market M, Lemma 1

implies that ui < expλ(ai,µ(i) + 1) for every man i ∈ I . Lemma 7, when invoked with r′ = r,

implies the lower bound expλ(ai,µ(i)) ≤ ui for every man i ∈ I .
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B A Generalization of the Deferred Acceptance Algorithm

This appendix presents a generalization of the deferred acceptance algorithm that provides a strat-

egyproof and Pareto-stable mechanism for the stable marriage problem with indifferences. The

algorithm admits an O(n4)-time implementation, where n denotes the number of agents in the

market. We only give the definitions and lemmas that are required by App. C, where we show that

the mechanism presented in this appendix coincides with the group strategyproof mechanism of

Sect. 3; full version of [6] includes the details and omitted proofs.

The assignment game of Shapley and Shubik [21] can be viewed as an auction with multiple

distinct items where each bidder is seeking to acquire at most one item. This class of unit-demand

auctions has been heavily studied in the literature (see, e.g., Roth and Sotomayor [20, Chapter 8]).

In App. B.1, we define the notion of a “unit-demand auction with priorities” (UAP), which extends

the notion of a unit-demand auction, and we establish a number of useful properties of UAPs.

Appendix B.2 builds on the UAP notion to define the notion of an “iterated UAP” (IUAP), and

defines a mapping from an IUAP to a UAP by describing an algorithm that generalizes the deferred

algorithm. App B.3 presents our polynomial-time algorithm that provides a strategyproof Pareto-

stable mechanism.

B.1 Unit-Demand Auctions with Priorities

In this appendix, we first formally define the notion of a unit-demand auction with priorities (UAP).

Then, we describe an associated matroid for a given UAP and we use this matroid to define the

notion of a “greedy MWM”. We start with some useful definitions.

A (unit-demand) bid β for a set of items V is a subset of V × R such that no two pairs in β
share the same first component. (So β may be viewed as a partial function from V to R.)

A bidder u for a set of items V is a triple (α, β, z) where α is an integer ID, β is a bid for V ,

and z is a real priority. For any bidder u = (α, β, z), we define id(u) as α, bid(u) as β, priority(u)
as z, and items(u) as the union, over all (v, x) in β, of {v}.

A unit-demand auction with priorities (UAP) is a pair A = (U, V ) satisfying the following

conditions: V is a set of items; U is a set of bidders for V ; each bidder in U has a distinct ID.

A UAP A = (U, V ) may be viewed as an edge-weighted bipartite graph, where the set of

edges incident on bidder u correspond to bid(u): for each pair (v, x) in bid(u), there is an edge

(u, v) of weight x. We refer to a matching (resp., maximum-weight matching (MWM), maximum-

cardinality MWM (MCMWM)) in the associated edge-weighted bipartite graph as a matching

(resp., MWM, MCMWM) of A. For any edge e = (u, v) in a given UAP, the associated weight is

denoted w(e) or w(u, v). For any set of edges E, we define w(E) as
∑

e∈E w(e).

Lemma 8. Let A = (U, V ) be a UAP, and let I denote the set of all subsets U ′ of U such that there

exists an MWM of A that matches every bidder in U ′. Then (U, I) is a matroid.

For any UAP A, we define matroid(A) as the matroid of Lemma 8.

For any UAP A = (U, V ) and any independent set U ′ of matroid(A), we define the priority

of U ′ as the sum, over all bidders u in U ′, of priority(u). For any UAP A, the matroid greedy

algorithm can be used to compute a maximum-priority maximal independent set of matroid(A).
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For any matching M of a UAP A = (U, V ), we define matched(M) as the set of all bidders

in U that are matched in M . We say that an MWM M of a UAP A is greedy if matched(M) is a

maximum-priority maximal independent set of matroid(A).
For any matching M of a UAP, we define the priority of M , denoted priority(M), as the sum,

over all bidders u in matched(M), of priority(u). Thus an MWM is greedy if and only if it is a

maximum-priority MCMWM.

Lemma 9. All greedy MWMs of a given UAP have the same distribution of priorities.

For any UAP A and any real priority z, we define greedy(A, z) as the (uniquely defined, by

Lemma 9) number of matched bidders with priority z in any greedy MWM of A.

B.2 Iterated Unit-Demand Auctions with Priorities

In this appendix, we first formally define the notion of an iterated unit-demand auction with priori-

ties (IUAP). An IUAP allows the bidders, called “multibidders” in this context, to have a sequence

of unit-demand bids instead of a single unit-demand bid. Then we define a mapping from an IUAP

to a UAP by describing an algorithm that generalizes the deferred algorithm. We start with some

useful definitions.

A multibidder t for a set of items V is a pair (σ, z) where z is a real priority and σ is a sequence

of bidders for V such that all the bidders in σ have distinct IDs and a common priority z. We define

priority(t) as z. For any integer i such that 1 ≤ i ≤ |σ|, we define bidder(t, i) as the bidder σ(i).
For any integer i such that 0 ≤ i ≤ |σ|, we define bidders(t, i) as {bidder(t, j) | 1 ≤ j ≤ i}. We

define bidders(t) as bidders(t, |σ|).
An iterated UAP (IUAP) is a pair B = (T, V ) where V is a set of items and T is a set of

multibidders for V . In addition, for any distinct multibidders t and t′ in T , the following conditions

hold: priority(t) 6= priority(t′); if u belongs to bidders(t) and u′ belongs to bidders(t′), then

id(u) 6= id(u′). For any IUAP B = (T, V ), we define bidders(B) as the union, over all t in T , of

bidders(t).
Having defined the notion of an IUAP, we now describe an algorithm TOUAP that maps a

given IUAP to a UAP. Algorithm TOUAP generalizes the deferred acceptance algorithm. In each

iteration of the deferred acceptance algorithm, an arbitrary single man is chosen, and this man

reveals his next choice. In each iteration of TOUAP, an arbitrary single multibidder is chosen,

and this multibidder reveals its next bid. We state in Lemma 12 that, like the deferred acceptance

algorithm, algorithm TOUAP is confluent: the output does not depend on the nondeterministic

choices made during an execution.

Let A be a UAP (U, V ) and let B be an IUAP (T, V ). The predicate prefix(A,B) is said to

hold if U ⊆ bidders(B) and for any multibidder t in T , U ∩ bidders(t) = bidders(t, i) for some i.
A configuration C is a pair (A,B) where A is a UAP, B is an IUAP, and prefix(A,B) holds.

Let C = (A,B) be a configuration, where A = (U, V ) and B = (T, V ), and let u be a bidder

in U . Then we define multibidder(C, u) as the unique multibidder t in T such that u belongs to

bidders(t).
Let C = (A,B) be a configuration where A = (U, V ) and B = (T, V ). For any t in T , we

define bidders(C, t) as {u ∈ U | multibidder(C, u) = t}.
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Let C = (A,B) be a configuration where B = (T, V ). We define ready(C) as the set of all

bidders u in bidders(B) such that greedy(A, priority(u)) = 0 and u = bidder(t, |bidders(C, t)|+
1) where t = multibidder(C, u).

Algorithm 1 TOUAP(B)

Require: An IUAP B = (T, V )
1: A← (∅, V )
2: C ← (A,B)
3: while ready(C) is nonempty do

4: A← A+ an arbitrary bidder in ready(C)
5: C ← (A,B)
6: end while

7: return A

Our algorithm for mapping an IUAP to a UAP is Algorithm 1. The input is an IUAP B and

the output is a UAP A such that prefix(A,B) holds. The algorithm starts with the UAP consisting

of all the items in V but no bidders. At this point, no bidder of any multibidder is “revealed”.

Then, the algorithm iteratively and chooses an arbitrary “ready” bidder and “reveals” it by adding

it to the UAP that is maintained in the program variable A. A bidder u associated with some

multibidder t = (σ, z) is ready if u is not revealed and for each bidder u′ that precedes u in σ, u′

is revealed and is not matched in any greedy MWM of A. It is easy to verify that the predicate

prefix(A,B) is an invariant of the algorithm loop: if a bidder u belonging to a multibidder t is to

be revealed at an iteration, and U ∩ bidders(t) = bidders(t, i) for some integer i at the beginning

of this iteration, then U ∩ bidders(t) = bidders(t, i + 1) after revealing u, where (U, V ) is the

UAP that is maintained by the program variable A at the beginning of the iteration. No bidder can

be revealed more than once since a bidder cannot be ready after it has been revealed; it follows

that the algorithm terminates. We now give some useful definitions and lemmas, and we state that

the output of the algorithm is uniquely determined (Lemma 12), even though the bidder that is

revealed in each iteration is chosen nondeterministically.

For any configuration C = (A,B), we define the predicate tail(C) to hold if for any bidder

u that is matched in some greedy MWM of A, we have u = bidder(t, |bidders(C, t)|) where t
denotes multibidder(C, u).

Lemma 10. Let C = (A,B) be a configuration where B = (T, V ) and assume that tail(C) holds.

Then greedy(A, priority(t)) ≤ 1 for each t in T .

Lemma 11. The predicate tail(C) is an invariant of the Alg. 1 loop.

Lemma 12. Let B = (T, V ) be an IUAP. Then all executions of Alg. 1 on input B produce the

same output.

For any IUAP B, we define uap(B) as the unique (by Lemma 12) UAP returned by any execu-

tion of Alg. 1 on input B.
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B.3 The Algorithm

The computation of a matching for an instance of the stable marriage market with indifferences is

shown in Alg. 2. In order to suit the presentation of the current paper, Alg. 2 is expressed using

a different notation than in [6]. For each woman j, we construct an item, denoted item(j), in

line 3. For each man i, we construct a dummy item, denoted item0(i), in line 7, and a multibidder,

denoted multibidder(i), in line 8, by examining the tiers of preference of the men and the utilities

of the women. The set {zi | i ∈ I} of priorities of the multibidders is equal to {1, . . . , |I|}, and we

assume that the men have no control over the assignment of the priorities. These multibidders and

items form an IUAP, from which we obtain a UAP and a greedy MWM M . Finally, in line 13, we

use M to determine the match of each man in the solution to the stable marriage instance.

Algorithm 2

1: for all j ∈ J do

2: Convert the preference relation �j of woman j into utility function ψj : I + 0 → R that

satisfies the following conditions: ψj(0) = 0; for any i and i′ in I + 0, we have i �j i
′ if and

only if ψj(i) ≥ ψj(i
′). This utility assignment should not depend on the preferences of the

men.

3: Construct an item, denoted item(j), corresponding to woman j.
4: end for

5: for all i ∈ I do

6: Partition the set J + 0 into tiers τi(1), . . . , τi(Ki) according to the preference relation of

man i, such that for any j in τi(k) and j′ in τi(k
′), we have j �i j

′ if and only if k ≤ k′.

7: Construct a dummy item, denoted item0(i), corresponding to man i.
8: Construct a multibidder (σi, zi), denoted multibidder(i), corresponding to man i. The pri-

ority zi is uniquely chosen from the set {1, . . . , |I|}. The sequence σi has Ki bidders such that

for each bidder σi(k), we define items(σi(k)) as {item(j) | j ∈ τi(k)} and w(σi(k), item(j))
as ψj(i), where item(0) denotes item0(i), and ψ0(i) denotes 0.

9: end for

10: B = (T, V ) = ({multibidder(i) | i ∈ I} , {item(j) | j ∈ J} ∪ {item0(i) | i ∈ I}).
11: A = uap(B).
12: Compute a greedy MWM M of UAP A.

13: Output matching µ such that for each man i in I and each woman j in J , we have µ(i) = j if

and only if σi(k) is matched to item item(j) in M for some k.

Algorithm 2 implements a strategyproof Pareto-stable mechanism for the stable marriage prob-

lem with indifferences [6, Theorem 1]. The algorithm admits anO(n4)-time implementation, since

lines 11 and 12 can be implemented in O(n4) time using the version of the incremental Hungarian

method discussed in [6, Sect. 3.1].

C Equivalence of the Two Mechanisms

In this appendix, we fix a stable marriage market (I, J, (�i)i∈I , (�j)j∈J) and an associated tiered-

slope marketM = (I, J, π,N, λ, a, b). As in Sections 2 and 3, fi,j(ui) denotes the compensation
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that man i needs to receive in order to attain utility ui in M when he is matched to woman j,
and gi,j(vj) denotes the compensation that woman j needs to receive in order to attain utility vj

in M when she is matched to man i. We let r denote the reserve utility vector of the men in

M, and we let s denote the reserve utility vector of the women inM. We consider an execution

of Alg. 2 on the stable marriage market (I, J, (�i)i∈I , (�j)j∈J), and we let B = (T, V ) denote

the IUAP constructed at line 10 of this execution. We assume that B is constructed in such a

way that the following conditions hold: for each man i, the priority of multibidder(i) is πi; the

offers of the multibidders in B, i.e., the weights of the edges of B, satisfy the conditions stated in

the last paragraph of App. C.1 below. With the assumption that these conditions hold, we show

in Theorem 5 that the set of greedy MWMs of uap(B) corresponds to the set of man-optimal

matchings ofM.

Algorithm 2 computes a greedy MWM of the UAP uap(B) in lines 11 and 12. Recall that we

defined uap(B) in App. B.2 by giving an algorithm that converts an IUAP to a UAP, namely Alg. 1.

In this appendix, we analyze the executions of Alg. 1 with input B in order to relate the greedy

MWMs of uap(B) that Alg. 2 computes to the man-optimal matchings of M. Our approach is

based on a technique used by Demange and Gale [5] to study various structural properties of their

model, such as the lattice property. Demange and Gale analyze market instances in which the

agents and their utility functions are fixed, while the reserve utilities vary. As noted by Roth and

Sotomayor [20, Chapter 9], lowering the reserve utility of an agent is analogous to extending the

preferences of an agent in the stable marriage model, a technique used to study structural properties

of the stable marriage model. Building on this idea, for each iteration of Alg. 1, we inductively

show a bijection (Lemmas 23 and 26) from the set of greedy MWMs of the UAP maintained at

that iteration to the man-optimal matchings of the corresponding tiered-slope market, where the

reserve utilities are adjusted to “reveal” only the preferences that are present in the UAP.

In the preceding sections, the terms “feasible”, “individually rational”, “stable”, and “man-

optimal” are used only for outcomes. Throughout this appendix, however, we also use these terms

for payoffs and matchings, as in [5]. Here we briefly review the related definitions. A pair (u, v)
consisting of a utility vector u of the men and a utility vector v of the women is a payoff. For any

feasible outcome (µ, u, v) of a marketM′, we say that (u, v) is a feasible payoff ofM′, and that µ
is compatible with (u, v). A feasible payoff (u, v) is individually rational if ui ≥ ri for each man i
and vj ≥ sj for each woman j. If an outcome (µ, u, v) is stable (resp., man-optimal) for a market

M′, then we say that µ is a stable (resp., man-optimal) matching ofM′, and that (u, v) is a stable

(resp., man-optimal) payoff inM′. For a given market, there is a unique man-optimal payoff, but

there can be more than one man-optimal matching.

C.1 Edge Weights of the IUAP

We start our discussion by introducing some useful mappings from items to women and from man-

woman pairs to bidders. Recall that, for each woman j, item(j) is constructed at line 3 of Alg. 2,

and for each man i, item0(i) is constructed at line 7 and multibidder(i) is constructed at line 8.

For any non-dummy item v in V , we define woman(v) as the woman in J associated with v.

(Thus for each woman j, woman(item(j)) is equal to j.) For any dummy item v in V , we define

woman(v) as 0. (Thus for each man i, woman(item0(i)) is equal to 0.) For any subset V ′ of V , we

define women(V ′) as {woman(v) | v ∈ V ′}. For any man i in I and any element j in J + 0, we

define bidder(i, j) as the bidder in multibidder(i) such that women(items(bidder(i, j))) contains
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j. Remark: For each man i, the dummy item item0(i) belongs to items(bidder(i, 0)).
In the remainder of the paper, for any man i and any woman j, we use the shorthand w(i, j) to

denote w(bidder(i, j), item(j)), and w(i, 0) to denote w(bidder(i, 0), item0(i)).
For any matching µ ofM, we define b(µ) as

∑

µ(j)6=0 bµ(j),j +
∑

µ(j)=0 b0,j , and we define w(µ)
as

∑

µ(j)6=0 w(µ(j), j).
We assume that the IUAPB is constructed so that the w(i, j)’s satisfy the following conditions:

(i) for any man i, w(i, 0) = 0; (ii) for any two matchings µ and µ′ ofM, w(µ) ≥ w(µ′) if and only

if b(µ) ≥ b(µ′). It is easy to see that one way to satisfy these conditions is to set ψj(i) = bi,j − b0,j

in Alg. 2.

C.2 Matchings of the Tiered-Slope Market and Greedy MWMs

In this appendix, we first introduce certain mappings from the tiered-slope market matchings to

the UAP matchings, and we define weights for these tiered-slope market matchings. Then, in

Lemma 18, we show that these mappings define bijections from certain sets of tiered-slope market

matchings — those maximizing the weights we introduce — to the sets of greedy MWMs. We

start with some useful definitions.

For any configuration C = (A,B) and any man i, we define the predicate Pall(C, i) to hold if

i has revealed all of his acceptable tiers in C, i.e., if bidder(i, 0) belongs to A.

Lemma 13. Let C = (A,B) be a configuration and let i be a man such that Pall(C, i) holds. Then

for each greedy MWM M of A, some bidder associated with i is matched in M .

Proof. Suppose the claim does not hold, and let M be a greedy MWM of A such that there is

no bidder associated with i that is matched in M . Then, since bidder(i, 0) and item0(i) belong

to A, w(i, 0) = 0, and priority(bidder(i, 0)) > 0, we deduce that the matching M ′ = M +
(bidder(i, 0), item0(i)) is an MWM of A such that priority(M ′) > priority(M), a contradiction.

We define C1 as the configuration (A,B) where A is the UAP that reveals only the first bidder

of each multibidder in T . We say that an execution of Alg. 1 invoked with inputB is canonical ifC1

is equal to the configuration that the program variable C stores at some iteration of this execution.

We define CF as the unique final configuration of any canonical execution, i.e., (uap(B), B). We

say that a configuration is relevant if it is equal to the configuration that the program variable C
stores at iteration t1 or a subsequent iteration of some canonical execution, where t1 is the iteration

at which C1 = C.

Given a relevant configuration C = (A,B), we now introduce a mapping from certain match-

ings in the tiered-slope marketM to the matchings in the UAP A, and a weight function for these

matchings inM. Let C = (A,B) be a relevant configuration and let µ be a matching ofM such

that for each man-woman pair (i, j) matched in µ, bidder(i, j) belongs to A. Then, we define

ΦC(µ) as the matching

⋃

µ(i)6=0

{(bidder(i, µ(i)), item(µ(i)))} ∪
⋃

µ(i)=0∧Pall (C,i)

{(bidder(i, 0), item0(i))} .

It is easy to see that ΦC is an injection and that ΦC(µ) is a matching of the UAP A. Furthermore,

we have w(ΦC(µ)) = w(µ) since w(bidder(i, 0), item0(i)) = 0 for any man i by condition (i) of
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App. C.1. For any man i, we define

π0(C, µ, i) =















0 if µ(i) 6= 0

πi if µ(i) = 0 and Pall(C, i)

(1− λ−1) if µ(i) = 0 and ¬Pall(C, i).

We define π0(C, µ) as
∑

i∈I π0(C, µ, i). Remark: It is easy to see that

π0(C, µ) =
∑

µ(i)=0

π0(C, µ, i) =
∑

µ(i)=0∧Pall (C,i)

πi +
∑

µ(i)=0∧¬Pall (C,i)

(1− λ−1).

Finally, we define WC(µ) as

N · b(µ) +
∑

µ(i)6=0

πi + π0(C, µ).

Remark: It is easy to see that

WC(µ) = N · b(µ) +
∑

µ(i)6=0∨Pall (C,i)

πi +
∑

µ(i)=0∧¬Pall (C,i)

(1− λ−1), (9)

and that the second term in the RHS is equal to priority(ΦC(µ)).
We now show that ΦC is invertible in certain cases.

Lemma 14. Let C = (A,B) be a relevant configuration and let M be a matching of A such that

the following conditions hold: (1) for each man i, at most one bidder associated with i is matched

in M ; (2) for each man i, if Pall(C, i) holds then a bidder associated with i is matched in M . Then

there exists a unique matching µ ofM such that ΦC(µ) is equal to M .

Proof. Let µ denote the matching such that µ(i) = j if and only if (bidder(i, j), item(j)) belongs

to M . It is easy to see by condition (1) that µ is a matching ofM. Moreover, condition (2) implies

that if µ(i) = 0 for a man i, then (bidder(i, 0), item0(i)) belongs to M . The claim follows since

ΦC is an injection and ΦC(µ) is equal to M .

Lemma 15. Let C = (A,B) be a relevant configuration and let M be a greedy MWM of A. Then

there exists a unique matching µ ofM such that ΦC(µ) is equal to M .

Proof. It is sufficient to prove that M satisfies the two conditions of Lemma 14. Condition (1) is

satisfied because Lemmas 10 and 11 imply that, for each man i, M matches at most one bidder

associated with i. Lemma 13 implies that Condition (2) is satisfied.

We now show that, given a relevant configuration C = (A,B), ΦC is a bijection from a certain

set of matchings ofM to the set of greedy MWMs of A. We start with some useful lemmas and

definitions that help us to define this set.

Lemma 16. Let C = (A,B) be a relevant configuration and let (i, j) be a man-woman pair such

that bidder(i, j) belongs to A. Then ai,j ≥ ai,0.
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Proof. If the least preferred acceptable tier of a man i is revealed at some iteration, i.e., if bidder(i, 0)
is added at line 4 of Alg. 1, then for any configuration C ′ that results in a subsequent iteration,

Pall(C
′, i) holds, and by Lemma 13, there is no bidder associated with i in ready(C ′). Hence no

other tier of i is subsequently revealed.

For any relevant configurationC and any man i, we define least(C, i) as the nonempty subset of

J+0 in the least preferred tier of i that is revealed inC, i.e., women(items(bidder(t, |bidders(C, t)|))),
where t denotes multibidder(i). Remark: ai,j = ai,j′ ≥ ai,0 for any j and j′ belonging to

least(C, i), where the inequality follows from Lemma 16 and is tight if and only if Pall(C, i)
holds.

For any relevant configurationC and any matching µ ofM, we define the predicate Pleast(C, µ)
to hold if for each man-woman pair (i, j) matched in µ, the woman j belongs to least(C, i). Re-

mark: For any relevant configuration C = (A,B) and any matching µ such that Pleast(C, µ) holds,

it is easy to see that ΦC(µ) is well-defined because for each man-woman pair (i, j) matched in µ,

bidder(i, j) belongs to A.

The following lemma is only used to prove Lemma 18.

Lemma 17. Let C = (A,B) be a relevant configuration, and let µ0 and µ be two matchings

of M such that Pleast(C, µ0) holds, ΦC(µ) is a greedy MWM of A, and w(µ0) < w(µ). Then

WC(µ0) < WC(µ).

Proof. Since ΦC(µ) is a greedy MWM of A, Lemma 11 implies that Pleast(C, µ) holds. Let M0

denote ΦC(µ0). The symmetric difference of M0 and M , denoted M0 ⊕ M , corresponds to a

collection S of vertex-disjoint paths and cycles. Let 〈Q1, . . . , Q|S|〉 be an arbitrary permutation of

S. For any integer k such that 1 ≤ k ≤ |S|, let Xk denote the edges of Qk that belong to M , let

X ′
k denote the edges of Qk that belong to M0, and let Mk denote the matching (Mk−1 \X

′
k) ∪Xk.

Remark: It is easy to see that M|S| is equal to M .

We start by showing that, for each integer k such that 1 ≤ k ≤ |S|, Mk satisfies the two condi-

tions of Lemma 14. It is easy to see that condition (1) holds because Pleast(C, µ0) and Pleast(C, µ)
imply that, for any integer k such that 0 ≤ k ≤ |S|, any bidder that is matched in Mk is the least

preferred bidder of the associated man that is revealed in A. We now address condition (2). Since

Pleast(C, µ0) and Pleast(C, µ) hold, the definitions of M0 and M imply that for each man i such

that Pall(C, i) holds, both M0 and M match the bidder bidder(i, 0). It follows that, for each man i
such that Pall(C, i) holds, bidder(i, 0) is not an endpoint of any path in S, and thus bidder(i, 0) is

matched inMk for all 1 ≤ k ≤ |S|, establishing condition (2). Having established thatMk satisfies

the two conditions of Lemma 14, for each integer k such that 1 ≤ k ≤ |S|, we define µk as the

matching ofM such that ΦC(µk) is equal to Mk. We now establish two simple but useful claims.

Claim 1: w(Mk) > w(Mk−1) for at least one k such that 1 ≤ k ≤ |S|. The claim follows

directly from the fact that w(M0) = w(µ0) < w(µ) = w(M) = w(M|S|).
Claim 2: w(Mk) ≥ w(Mk−1) for all 1 ≤ k ≤ |S|. For the sake of contradiction, suppose that

the claim fails for some integer k. Then (M \Xk)∪X ′
k is a matching ofA with weight higher than

that of M , a contradiction since M is an MWM of A.

Having established these two claims, we now complete the proof of the lemma by showing

that the following two conditions hold for any 1 ≤ k ≤ |S|: (a) if w(Mk) > w(Mk−1) then

WC(µk) > WC(µk−1); and (b) if w(Mk) = w(Mk−1) then WC(µk) ≥WC(µk−1).
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We first address condition (a). Let k be an integer such that 1 ≤ k ≤ |S| and w(Mk) >
w(Mk−1). Our goal is to establish that WC(µk) > WC(µk−1). Since |I| − |ΦC(µ′)| is equal to

|{i | µ′(i) = 0 ∧ ¬Pall(C, i)}| for any µ′, equality (9) and the associated remark imply that the

difference WC(µk)−WC(µk−1) is equal to

N · (b(µk)− b(µk−1)) + (priority(Mk)− priority(Mk−1)) +
(|Mk−1| − |Mk|)(1− λ

−1).
(10)

Since w(µk) = w(Mk) > w(Mk−1) = w(µk−1), condition (ii) stated in App. C.1 implies that

b(µk) > b(µk−1). Then, since N , b(µk), b(µk−1), and the priorities are integers, and since N >
maxi∈I πi, we deduce that the first term of (10) is at least 1 + maxi∈I πi. Thus, in order to establish

that WC(µk) > WC(µk−1), it is enough to show that the sum of the second and third term of (10)

is greater than −1 − maxi∈I πi. If Qk is a cycle, then it is easy to see that matched(Mk) =
matched(Mk−1), and hence that both the second and third terms of (10) are zero. In the remainder

of this paragraph, we address the case where Qk is a path. In this case, it is easy to see that

matched(Mk−1) \ matched(Mk) contains at most one bidder. Then, since mini∈I πi > 0, we

deduce that the second term of (10) is at least−maxi∈I πi. Finally, since−1 ≤ |Mk−1|−|Mk| ≤ 1,

we conclude that the third term of (10) is greater than −1, as required.

We now address condition (b). Let k be an integer such that 1 ≤ k ≤ |S| and w(Mk) =
w(Mk−1). Our goal is to establish that WC(µk) ≥ WC(µk−1). Again, the difference WC(µk) −
WC(µk−1) is equal to (10). In this case, since w(µk) = w(Mk) = w(Mk−1) = w(µk−1), con-

dition (ii) stated in App. C.1 implies that b(µk) = b(µk−1), and hence that the first term of (10)

is zero. Thus, in order to establish that WC(µk) ≥ WC(µk−1), it remains to show that the sum

of the second and third term of (10) is nonnegative. If Qk is a cycle, then it is easy to see that

matched(Mk) = matched(Mk−1), and hence that both the second and third terms of (10) are zero.

In the remainder of this paragraph, we address the case where Qk is a path. In this case, it is easy

to see that matched(Mk) 6= matched(Mk−1). Since (as argued in the second paragraph of the

proof) any bidder that is matched in Mk or in Mk−1 is the least preferred bidder of the associated

man that is revealed in A, we deduce that priority(Mk) 6= priority(Mk−1). We conclude that

priority(Mk) > priority(Mk−1), for otherwise (M \ Xk) ∪ X ′
k is an MWM of A with priority

higher than that of M , a contradiction since M is a greedy MWM of A. It follows that the second

term of (10) is at least 1 since the priorities are integers. Finally, since −1 ≤ |Mk−1| − |Mk| ≤ 1,

we conclude that the third term of (10) is greater than −1, as required.

Lemma 18. Let C = (A,B) be a relevant configuration and let X be the set of all matchings µ of

M such that Pleast(C, µ) holds. Let X∗ denote the set {µ | µ ∈ X ∧WC(µ) = maxµ′∈X WC(µ′)}.
Then, ΦC is a bijection from X∗ to the set of greedy MWMs of A.

Proof. Let M be a greedy MWM of A and let µ be the matching (by Lemma 15) ofM such that

ΦC(µ) is equal to M . Lemma 11 implies that Pleast(C, µ) holds; thus µ belongs to X . Let µ∗ be

a matching in X∗ and let M∗ denote ΦC(µ∗). Note that M∗ is a matching of A. Since ΦC is an

injection, it remains to show that WC(µ) = maxµ′∈X WC(µ′) and that M∗ is a greedy MWM of A.

Since WC(µ) ≤ maxµ′∈X WC(µ′) = WC(µ∗), Lemma 17 implies that w(µ) ≤ w(µ∗). Then,

since M is an MWM of A, we deduce that M∗ is an MWM of A. Since M is a greedy MWM, and

hence an MCMWM of A, we deduce that |M∗| ≤ |M |. We consider two cases.

Case 1: |M∗| < |M |. Let x be a bidder in matched(M) \matched(M∗) such that there exists

an MWM, call it M ′, of A having matched(M ′) = matched(M∗) + x; the exchange property
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of matroid(A) implies the existence of such a bidder x and matching M ′. Let i′ denote the man

associated with x. We first argue that M ′ satisfies the two conditions of Lemma 14. By definition,

the men corresponding to the bidders in matched(M∗) are distinct; let I ′ denote the set of men

corresponding to these bidders, i.e., I ′ = {i | µ∗(i) 6= 0 ∨ Pall(C, i)}. Since Pleast(C, µ
∗) holds,

we deduce that, for each man i in I ′, the bidder in matched(M∗) associated with i corresponds

to the least preferred tier of i that is revealed in C. Lemma 11 implies that x corresponds to the

least preferred tier of i′ that is revealed in C. Then, since x does not belong to matched(M∗), the

results of the preceding two sentences imply that i′ does not belong to I ′, and thus that M ′ satisfies

condition (1). We now address condition (2). Matching M∗ satisfies condition (2) by definition.

Thus M ′ satisfies condition (2) since any bidder matched by M∗ is also matched by M ′. Since M ′

satisfies conditions (1) and (2), Lemma 14 implies that there is a matching, call it µ′, ofM such that

ΦC(µ′) is equal to M ′. Since both M ′ and M∗ are MWMs of A, condition (ii) stated in App. C.1

implies that b(µ′) = b(µ∗). Since matched(M ′) properly contains matched(M∗), we deduce

that the set {i | µ′(i) 6= 0 ∨ Pall(C, i)} properly contains the set {i | µ∗(i) 6= 0 ∨ Pall(C, i)}. Then,

since πi > (1−λ−1) for each man i, the results of the preceding two sentences imply thatWC(µ′) >
WC(µ∗), contradicting the definition of µ∗.

Case 2: |M∗| = |M |. Since both M and M∗ are MWMs of A, condition (ii) stated in App. C.1

implies that b(µ) = b(µ∗). Since |matched(M)| = |matched(M∗)|, we deduce that the cardinality

of {i | µ(i) 6= 0 ∨ Pall(C, i)} is equal to the cardinality of {i | µ∗(i) 6= 0 ∨ Pall(C, i)}. Then, by

using the results of the preceding two sentences and the remark regarding the second term in the

RHS of (9), we deduce that WC(µ)−WC(µ∗) = priority(ΦC(µ))− priority(ΦC(µ∗)). The latter

expression is nonnegative since M is a greedy MWM of A, and it is nonpositive since WC(µ∗) =
maxµ′∈X WC(µ′). Thus we deduce thatWC(µ) = maxµ′∈X WC(µ′) and thatM∗ is a greedy MWM

of A.

C.3 Revealing Preferences in the Tiered-Slope Market

Recall that Alg. 1 iteratively reveals the bidders, which correspond to the tiers of men, and the state

of the revealed bidders are captured in a configuration. In this appendix, we first show how to adjust

the reserve utilities of the men to obtain markets identical to the tiered-slope market except that

only the tiers that are revealed in a configuration are acceptable (Lemma 19). Then, we inductively

show a bijection (Lemma 23 and 26) from the set of greedy MWMs of the UAP maintained at

each iteration of Alg. 1 to the man-optimal matchings of the corresponding market with adjusted

reserve utilities. Finally, we establish our result in Theorem 5, and we prove Theorem 4 of Sect. 4.

For any relevant configuration C, we define reserve(C) as the reserve utility vector r′ of I such

that for each man i,

r′
i = max

{

ri, (1− λ
−1) expλ(ai,j)

}

=







πi expλ(ai,0) if Pall(C, i)

(1− λ−1) expλ(ai,j) otherwise,

where j is some element in least(C, i).
For any reserve utility vector r′ of I such that r′ ≥ r, we defineM(r′) as the market that is

equal to M except that the reserve utilities of the men are given by r′. For any relevant config-

uration C, we define M(C) as M(reserve(C)). Lemma 19 below shows that, for any relevant

configuration C, only the tiers of men that are revealed in C are “acceptable” inM(C).
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Lemma 19. Let C = (A,B) be a relevant configuration, let (µ, u, v) be an individually rational

outcome forM(C), and let (i, j) be a man-woman pair matched in µ. Then bidder(i, j) belongs

to A.

Proof. We have

fi,j(ui) ≤ −gi,j(vj) = −vj +Nbi,j + πi

≤ N (bi,j − b0,j) + πi

≤ Nbi,j −N + πi

≤ λ− 2N + πi

≤ λ− 2,

where the inequalities are justified as follows: the first inequality follows from the feasibility of

(µ, u, v); the second inequality follows from the individual rationality of (µ, u, v), which implies

vj ≥ sj = Nb0,j ; the third inequality follows since b0,j ≥ 1; the fourth inequality follows since

λ ≥ maxi,j(bi,j + 1)N ; the fifth inequality follows since N > maxi∈I πi. Then, since fi,j(ui) ≤
λ− 2, we deduce that ui ≤ (λ− 2) expλ(ai,j).

Let r′ denote reserve(C) and let j′ be an arbitrary element in least(C, i). Assume the claim

of the lemma is false: thus ai,j < ai,j′ . Then, since ui ≤ (λ − 2) expλ(ai,j), we conclude that

ui < (1− λ−1) expλ(ai,j′), and hence that ui < r′
i, contradicting individual rationality.

The following lemma provides a lower bound on the utilities of men in the man-optimal out-

comes. It is used in the proof of Lemma 26.

Lemma 20. Let C be a relevant configuration, let (µ, u, v) be a man-optimal outcome forM(C),
and let (i, j) be a man-woman pair matched in µ. Then ui ≥ expλ(ai,j).

Proof. Let r′ denote reserve(C). We show that r′ satisfies the conditions required by Lemma 7,

then the claim follows from that lemma. By definition, r′ is at least r, so it satisfies condition (i).

For any man i, if Pall(C, i) holds, then r′
i is equal to πi expλ(ai,0), and it is easy to see that

r′
i expλ(k) is an integer for any integer k ≥ −ai,0 and that 0 < r′

i expλ(k) < 1 for any integer

k < −ai,0; otherwise, r′
i is equal to (1−λ−1) expλ(ai,j) where j is some element in least(C, i), and

it is easy to see that r′
i expλ(k) is an integer for any integer k > −ai,j and that 0 < r′

i expλ(k) < 1
for any integer k ≤ −ai,j . Thus, r′ satisfies condition (ii) as well.

For a matching µ satisfying Pleast(C, µ), the following lemma gives a necessary and sufficient

condition for µ to be a stable matching ofM(C). The proof of the lemma is quite involved and is

deferred to App. C.4.

Lemma 21. Let C be a relevant configuration and let X be the set of all matchings µ ofM(C)
such that Pleast(C, µ) holds. Assume that there exists at least one stable outcome, denoted (µ, u, v),
forM(C) such that µ belongs to X . Then, a matching µ∗ that belongs to X is compatible with the

stable payoff (u, v) if and only if WC(µ∗) = maxµ′∈X WC(µ′).

For any relevant configuration C, we define the predicate Popt(C) to hold if for each man-

optimal matching µ ofM(C), Pleast(C, µ) holds. Remark: It is easy to see that Pleast(C1, µ) holds

for any matching µ ofM(C1), and thus Popt(C1) holds. For a relevant configuration C satisfying

Popt(C), the following lemma characterizes the man-optimal matchings ofM(C).
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Lemma 22. Let C be a relevant configuration such that Popt(C) holds. Let X be the set of all

matchings µ ofM(C) such that Pleast(C, µ) holds. Then, a matching µ is a man-optimal matching

ofM(C) if and only if µ belongs to X and WC(µ) = maxµ′∈X WC(µ′).

Proof. Let X∗ denote the set {µ | µ ∈ X ∧WC(µ) = maxµ′∈X WC(µ′)}. Since Popt(C) implies

that all man-optimal matchings ofM(C) are included in X , and since there is at least one man-

optimal matching [5, Property 2], we deduce that X contains a man-optimal, and hence stable,

matching. Thus, Lemma 21 implies that the set of stable matchings ofM(C) is equal to X∗, and

that each matching in X∗ is compatible with the man-optimal payoff inM(C).

Lemma 23. Let C = (A,B) be a relevant configuration such that Popt(C) holds. Then, ΦC is a

bijection from the set of man-optimal matchings ofM(C) to the set of greedy MWMs of A.

Proof. Let X be the set of all matchingsM(C) ofM such that Pleast(C, µ) holds. Let X∗ denote

the set {µ | µ ∈ X ∧WC(µ) = maxµ′∈X WC(µ′)}. Lemma 22 implies that the set of man-optimal

matchings ofM(C) is equal to X∗. Then the claim follows from Lemma 18.

Having established the correspondence between the man-optimal matchings and the greedy

MWMs given a relevant configuration C such that Popt(C) holds, we now show inductively in

Lemma 26 that Popt(C) holds for all relevant configurations C. We start with two lemmas that are

useful in proving Lemma 26; the second one (Lemma 25) is also used in the proof of Theorem 5.

Lemma 24. Let C be a relevant configuration such that Popt(C) holds, let r′ denote reserve(C),
and let (u, v) denote the man-optimal payoff in M(C). Then, for each bidder in ready(C), we

have ui = r′
i, where i denotes the man associated with that bidder.

Proof. Let C be (A,B). If a bidder belongs to ready(C), then it is not matched in any greedy

MWM of A, and the definition of ΦC and Lemma 23 imply that it is not matched in any man-

optimal matching ofM(C). Then the claim of the lemma follows from the stability of (u, v).

Lemma 25. Let r′ and r′′ be two reserve utility vectors of the men such that r′ ≥ r′′ ≥ r. Let

(u′, v′) and (u′′, v′′) be the man-optimal payoffs ofM(r′) andM(r′′), respectively. Then u′ ≥ u′′.

Proof. The claim of the lemma follows directly from [5, Property 3].

Lemma 26. Let C be a relevant configuration such that for each relevant configuration C ′ that

precedes C, Popt(C
′) holds. Then Popt(C) holds.

Proof. Consider an arbitrary canonical execution that produces C at some iteration and let (A,B)
be the configuration C. For the sake of contradiction, assume Popt(C) does not hold. Let (µ, u, v)
be a man-optimal outcome forM(C) such that Pleast(C, µ) does not hold and let (i, j) be a man-

woman pair matched in µ such that j does not belong to least(C, i). Let j′ be an arbitrary element

of least(C, i). Since Lemma 19 implies that bidder(i, j) belongs to A, we deduce that ai,j > ai,j′ .

Let C ′ be the configuration at the beginning of the iteration that reveals the tier of i corresponding

to least(C, i), i.e., the iteration at which bidder(i, j′) is added at line 4 of Alg. 1. Let j′′ be an

arbitrary element of least(C ′, i), let r′ denote reserve(C ′), and let (u′, v′) denote the man-optimal

payoff inM(C ′). Then, we deduce that ai,j ≥ ai,j′′ > ai,j′ ≥ ai,0, where the last inequality follows

from Lemma 16. Thus, Pall(C
′, i) does not hold, and hence r′

i = (1 − λ−1) expλ(ai,j′′). Since
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bidder(i, j′) belongs to ready(C ′), and since Popt(C
′) holds, Lemma 24 implies that u′

i = r′
i =

(1−λ−1) expλ(ai,j′′). On the other hand, since the man-woman pair (i, j) is matched in µ, which is

a man-optimal matching ofM(C), Lemma 20 implies that ui ≥ expλ(ai,j). Combining the results

of the preceding two sentences, we conclude that ui ≥ expλ(ai,j) > (1 − λ−1) expλ(ai,j′′) = u′
i,

contradicting Lemma 25 since reserve(C) ≤ reserve(C ′).

We are now ready to establish our equivalence result in Theorem 5. We start with a useful

lemma.

Lemma 27. For each greedy MWM M of uap(B) and each man i, some bidder associated with i
is matched in M .

Proof. Suppose the claim does not hold, and let M be a greedy MWM of uap(B) and let i be a

man such that no bidder associated with i is matched in M . Then all of the bidders associated

with i belong to uap(B), for otherwise ready(CF ) is nonempty, contradicting the definition of CF

(recall that CF = (uap(B), B) is the unique final configuration of any canonical execution). Thus,

we deduce that Pall(CF , i) holds, and Lemma 13 implies that some bidder associated with i is

matched in M , a contradiction.

Theorem 5. ΦCF
is a bijection from the set of man-optimal matchings ofM to the set of greedy

MWMs of uap(B).

Proof. Observe that Popt(CF ) holds by repeated application of Lemma 26. Let (u, v) denote the

man-optimal payoff inM(CF ). Let r′ denote reserve(CF ) and recall that r is the reserve utility

vector of the men inM. We now prove two useful claims.

Claim 1: Any man-optimal outcome (µ, u, v) forM(CF ) is stable forM. Let (µ, u, v) be a

man-optimal outcome forM(CF ). SinceM(CF ) andM differ only in the reserve utility vectors

of the men, it is enough to show that for each man i who is unmatched in µ, we have ui = ri. Let i
be a man who is unmatched in µ. Observe that Pall(CF , i) holds, for otherwise no bidder associated

with i is matched in ΦCF
(µ), which is a greedy MWM of uap(B) by Lemma 23, contradicting

Lemma 27. Thus r′
i = πi expλ(ai,0) = ri. Then, by the stability of (µ, u, v) for M(CF ), we

conclude that ui = r′
i = ri.

Claim 2: Any man-optimal outcome for M is stable for M(CF ). Claim 1 and Lemma 25

imply that the payoff (u, v), which is the man-optimal payoff inM(CF ), is also the man-optimal

payoff inM. Let (µ, u, v) be a man-optimal outcome forM. As in the proof of Claim 1, since

M(CF ) andM differ only in the reserve utility vectors of the men, it is enough to show that for

each man i who is unmatched in µ, we have ui = r′
i. Let i be a man who is unmatched in µ. By

the stability of (µ, u, v) forM, we deduce that ui = ri. By the individual rationality of (u, v) for

M(CF ), we deduce that ui ≥ r′
i. Since r′ ≥ r, we conclude that ui = ri = r′

i.

Claims 1 and 2, and Lemma 25 imply that the set of man-optimal matchings of M is equal

to the set of man-optimal matchings ofM(CF ). Then the theorem follows from Lemma 23 since

Popt(CF ) holds.

Proof of Theorem 4. We construct a tiered-slope market M associated with the instance of the

stable marriage market with indifferences, and we run Alg. 2, which admits an O(n4)-time im-

plementation, by setting the edge weights as described in App. C.1. Then the result follows from

Theorems 3 and 5.
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C.4 Proof of Lemma 21

The purpose of this appendix is to prove Lemma 21. We start with some useful lemmas.

Lemma 28. Let C be a relevant configuration, let µ be a matching ofM(C), and let v be a utility

vector of the women such that vj = sj for each woman j who is unmatched in µ. Then,

∑

j∈J

vj −WC(µ) + π0(C, µ) =
∑

µ(j)6=0

gµ(j),j(vj).

Proof.

∑

j∈J

vj −WC(µ) + π0(C, µ) =
∑

j∈J

vj −N · b(µ)−
∑

µ(i)6=0

πi

=
∑

µ(j)6=0

vj −N
∑

µ(j)6=0

bµ(j),j −
∑

µ(j)6=0

πµ(j)

+
∑

µ(j)=0

sj −N
∑

µ(j)=0

b0,j

=
∑

µ(j)6=0

(

vj − bµ(j),jN − πµ(j)

)

=
∑

µ(j)6=0

gµ(j),j(vj),

where the third equality follows since sj = Nb0,j .

Lemma 29. Let C be a relevant configuration and let (µ, u, v) be a stable outcome for M(C).
Then,

WC(µ) =
∑

µ(i)6=0

fi,µ(i)(ui) +
∑

j∈J

vj + π0(C, µ).

Proof. The stability and feasibility of (µ, u, v) imply that fi,j(ui) + gi,j(vj) = 0 for each man-

woman pair (i, j) matched in µ. Thus,
∑

µ(i)6=0 fi,µ(i)(ui) +
∑

µ(j)6=0 gµ(j),j(vj) = 0, and the claim

follows from Lemma 28, since the stability of (µ, u, v) implies that vj = sj for each woman j who

is unmatched in µ.

Lemma 30. Let C be a relevant configuration, let µ and µ′ be two matchings such that Pleast(C, µ)
and Pleast(C, µ

′) hold, let r′ denote reserve(C), and let u be a utility vector such that for each man

i, ui = r′
i if µ(i) = 0 or µ′(i) = 0. Then

∑

µ(i)6=0 fi,µ(i)(ui) + π0(C, µ) =
∑

µ′(i)6=0 fi,µ′(i)(ui) +
π0(C, µ′).

Proof. Let fi,0(ui) denote 0. We show that fi,µ(i)(ui) + π0(C, µ, i) = fi,µ′(i)(ui) + π0(C, µ′, i) for

each man i. Let i be an arbitrary man. We consider six cases.

Case 1: µ(i) 6= 0 and µ′(i) 6= 0. Then π0(C, µ, i) = π0(C, µ′, i) = 0. Pleast(C, µ) and

Pleast(C, µ
′) and imply that ai,µ(i) = ai,µ′(i), and hence fi,µ(i)(ui) = fi,µ′(i)(ui).

Case 2: µ(i) = µ′(i) = 0. In this case π0(C, µ, i) (resp., π0(C, µ′, i)) is independent of µ (resp.,

µ′).

Case 3 (resp., case 4): µ(i) 6= 0 and µ′(i) = 0 (resp., µ(i) = 0 and µ′(i) 6= 0) and

Pall(C, i). Since Pall(C, i) holds, we deduce that r′
i = πi expλ(ai,0). Then, since ui = r′

i,
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Pleast(C, µ) (resp., Pleast(C, µ
′)) implies that fi,µ(i)(ui) + π0(C, µ, i) = fi,µ(i)(r

′
i) = πi (resp.,

fi,µ′(i)(ui) + π0(C, µ′, i) = fi,µ′(i)(r
′
i) = πi). Since µ′(i) = 0 (resp., µ(i) = 0), we deduce that

fi,µ′(i)(ui) + π0(C, µ′, i) (resp., fi,µ(i)(ui) + π0(C, µ, i)) is equal to 0 + πi = πi.

Case 5 (resp., case 6): µ(i) 6= 0 and µ′(i) = 0 (resp., µ(i) = 0 and µ′(i) 6= 0) and ¬Pall(C, i).
Let j denote µ(i) (resp., µ′(i)). Since Pleast(C, µ) (resp., Pleast(C, µ

′)) and ¬Pall(C, i), we deduce

that r′
i = (1 − λ−1) expλ(ai,j). Then, since ui = r′

i, we deduce that fi,µ(i)(ui) + π0(C, µ, i) =
fi,µ(i)(r

′
i) = (1− λ−1) (resp., fi,µ′(i)(ui) + π0(C, µ′, i) = fi,µ′(i)(r

′
i) = (1− λ−1)). Since µ′(i) = 0

(resp., µ(i) = 0), we deduce that fi,µ′(i)(ui) + π0(C, µ
′, i) (resp., fi,µ(i)(ui) + π0(C, µ, i)) is equal

to 0 + (1− λ−1) = (1− λ−1).

Lemma 31. Let C be a relevant configuration and let r′ denote reserve(C). Let X be the set of

all matchings µ ofM(C) such that Pleast(C, µ) holds. Let (µ, u, v) be a stable outcome forM(C)
such that µ belongs to X . Let µ∗ be a matching in X such that WC(µ∗) = maxµ′∈X WC(µ′).
Then the following claims hold: (1) ui = r′

i if µ∗(i) = 0; (2) vj = sj if µ∗(j) = 0; (3)
∑

µ(i)6=0 fi,µ(i)(ui) + π0(C, µ) =
∑

µ∗(i)6=0 fi,µ∗(i)(ui) + π0(C, µ∗).

Proof. Let S denote the symmetric difference of µ and µ∗. It is easy to see that S is a collection of

positive length paths and cycles. In order to prove Claim (1) of the lemma, consider an arbitrary

man i such that µ∗(i) = 0. If µ(i) = 0, then the stability of (u, v) establishes the claim, so assume

that µ(i) 6= 0. Then, i is an endpoint of a path in S; let P denote this path. The edges of P alternate

between edges that are matched in µ and edges that are matched in µ∗. We consider two cases.

Case 1: The other endpoint of P is a man i′ such that µ(i′) = 0 and µ∗(i) 6= 0. Let P be

〈i = i1, j1, . . . , jk, ik+1 = i′〉 for some k ≥ 1. Then, since µ(iℓ) = jℓ for 1 ≤ ℓ ≤ k, the stability

of (µ, u, v) implies that
∑

1≤ℓ≤k

[fiℓ,jℓ
(uiℓ

) + giℓ,jℓ
(vjℓ

)] = 0.

The stability of (µ, u, v) also implies that

∑

1≤ℓ≤k

[

fiℓ+1,jℓ
(uiℓ+1

) + giℓ+1,jℓ
(vjℓ

)
]

≥ 0.

By subtracting the latter equation from the former, we obtain the following, since Pleast(C, µ) and

Pleast(C, µ
∗) imply fiℓ,jℓ

(uiℓ
) = fiℓ,jℓ−1

(uiℓ
) for 1 < ℓ ≤ k:

0 ≥ fi,j1
(ui)− fi′,jk

(ui′) +
∑

1≤ℓ≤k

[

giℓ,jℓ
(vjℓ

)− giℓ+1,jℓ
(vjℓ

)
]

= (fi,j1
(ui)− πi)− (fi′,jk

(ui′)− πi′) +N
∑

1≤ℓ≤k

(

biℓ+1,jℓ
− biℓ,jℓ

)

. (11)

Observe that

fi,j1
(ui)− πi ≥ fi,j1

(r′
i)− πi ≥ (1− λ−1)− πi > −N, (12)

since the individual rationality of (u, v) implies ui ≥ r′
i and since Pleast(C, µ) holds. Also observe

that

fi′,jk
(ui′)− πi′ = fi′,jk

(r′
i′)− πi′ ≤ 0,

since the stability of (µ, u, v) implies ui′ = r′
i′ and since Pleast(C, µ

∗) holds. These two observa-

tions imply that the third term in (11) is nonpositive, for otherwise it would be at least N (since
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all b values are integers), violating the inequality. The third term in (11) is nonnegative, for oth-

erwise µ∗ could be augmented along P to yield another matching µ′ such that Pleast(C, µ
′) and

WC(µ′)−WC(µ∗) ≥ N − πi′ > 0 (since all b values are integers and N > πi′), contradicting the

definition of µ∗. Thus, we may rewrite inequality (11) as

fi′,jk
(r′

i′)− πi′ ≥ fi,j1
(ui)− πi. (13)

We consider the following four subcases.

Case 1.1: Pall(C, i) and Pall(C, i
′). Since Pleast(C, µ

∗) and Pall(C, i
′) hold, we deduce that

r′
i′ = πi′ expλ(ai′,jk

), and hence that LHS of (13) is 0. Since Pleast(C, µ) and Pall(C, i) hold, we

deduce that r′
i = πi expλ(ai′,j1

), and hence that RHS of (13) is at least 0 by the first inequality

of (12). Thus, we conclude that fi,j1
(ui) = πi, which implies ui = r′

i.

Case 1.2: ¬Pall(C, i) and ¬Pall(C, i
′). First observe that πi′ > πi, for otherwise µ∗ could be

augmented along P to yield another matching µ′ such that Pleast(C, µ
′) and WC(µ′)−WC(µ∗) =

πi − πi′ > 0, contradicting the definition of µ∗. Since Pleast(C, µ
∗) holds and Pall(C, i

′) does not

hold, we deduce that r′
i′ = (1 − λ−1) expλ(ai′,jk

), and hence that LHS of (13) is (1− λ−1) − πi′ .

However, the RHS of (13) is at least (1− λ−1)− πi by (12), contradicting the inequality πi′ > πi.

Case 1.3: ¬Pall(C, i) and Pall(C, i
′). This case is not possible, for otherwise µ∗ could be

augmented along P to yield another matching µ′ such that Pleast(C, µ
′) and WC(µ′)−WC(µ∗) =

πi − (1− λ−1) > 0 (since πi > (1− λ−1) for each man i), contradicting the definition of µ∗.

Case 1.4: Pall(C, i) and ¬Pall(C, i
′). Since Pleast(C, µ

∗) holds and Pall(C, i
′) does not hold, we

deduce that r′
i′ = (1− λ−1) expλ(ai′,jk

), and hence that LHS of (13) is (1− λ−1)− πi′ < 0. Since

Pleast(C, µ) and Pall(C, i) hold, we deduce that r′
i = πi expλ(ai′,j1

), and hence that RHS of (13) is

at least 0 by the first inequality of (12), a contradiction.

Case 2: The other endpoint of P is a woman j such that µ(j) 6= 0 and µ∗(j) = 0. Let P be

〈i = i1, j1, . . . , ik, jk = j〉 for some k ≥ 1. Then, since µ(iℓ) = jℓ for 1 ≤ ℓ ≤ k, the stability of

(µ, u, v) implies that
∑

1≤ℓ≤k

[fiℓ,jℓ
(uiℓ

) + giℓ,jℓ
(vjℓ

)] = 0.

The stability of (µ, u, v) also implies that

∑

1<ℓ≤k

[

fiℓ,jℓ−1
(uiℓ

) + giℓ,jℓ−1
(vjℓ−1

)
]

≥ 0.

By subtracting the latter equation from the former, we obtain the following, since Pleast(C, µ) and

Pleast(C, µ
∗) imply fiℓ,jℓ

(uiℓ
) = fiℓ,jℓ−1

(uiℓ
) for 1 < ℓ ≤ k:

0 ≥ fi,j1
(ui) +

∑

1≤ℓ≤k

giℓ,jℓ
(vjℓ

)−
∑

1<ℓ≤k

giℓ,jℓ−1
(vjℓ−1

)

= (fi,j1
(ui)− πi) + vj +N





∑

1<ℓ≤k

biℓ,jℓ−1
−

∑

1≤ℓ≤k

biℓ,jℓ





= (fi,j1
(ui)− πi) + (vj − sj) +N







b0,j +
∑

1<ℓ≤k

biℓ,jℓ−1



−
∑

1≤ℓ≤k

biℓ,jℓ



 . (14)

Observe that (12) holds for the same reasons pointed out in Case 1, and that the second term in (14)

is nonnegative by the individual rationality of (u, v). Moreover, the third term is nonnegative, for
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otherwise µ∗ could be augmented along P to yield another matching µ′ such that Pleast(C, µ
′) and

WC(µ′) −WC(µ∗) ≥ N (since all b values are integers), contradicting the definition of µ∗. We

consider two subcases.

Case 2.1: Pall(C, i). Then Pleast(C, µ) implies that r′
i = πi expλ(ai′,j1

), and we deduce that the

first term in (14) is at least 0 by the first inequality of (12). Thus, we conclude that vj = sj and

that fi,j1
(ui) = πi, which implies ui = r′

i.

Case 2.2: ¬Pall(C, i). In this case the third term in (14) is positive, and thus is at least N (since

all b values are integers), for otherwise (if it is 0), µ∗ could be augmented along P to yield another

matching µ′ such that Pleast(C, µ
′) and WC(µ′)−WC(µ∗) = πi− (1−λ−1) > 0, contradicting the

definition of µ∗. Since (12) implies that the first term of (14) is greater than −N , we deduce that

the sum of the three terms in (14) is positive, a contradiction.

In order to prove Claim (2) of the lemma, consider an arbitrary woman j such that µ∗(j) = 0.

If µ(j) = 0, then the stability of (u, v) establishes the claim, so assume that µ(j) 6= 0. Then, j is

an endpoint of a path in S; let P denote this path. The edges of P alternate between edges that are

matched in µ and edges that are matched in µ∗. We consider two cases.

Case 1: The other endpoint of P is a woman j′ such that µ(j′) = 0 and µ∗(j) 6= 0. Let P be

〈j = j1, i1, . . . , ik, jk+1 = j′〉 for some k ≥ 1. Then, since µ(iℓ) = jℓ for 1 ≤ ℓ ≤ k, the stability

of (µ, u, v) implies that
∑

1≤ℓ≤k

[fiℓ,jℓ
(uiℓ

) + giℓ,jℓ
(vjℓ

)] = 0.

The stability of (µ, u, v) also implies that

∑

1≤ℓ≤k

[

fiℓ,jℓ+1
(uiℓ

) + giℓ,jℓ+1
(vjℓ+1

)
]

≥ 0.

By subtracting the latter equation from the former, we obtain the following, since Pleast(C, µ) and

Pleast(C, µ
∗) imply fiℓ,jℓ

(uiℓ
) = fiℓ,jℓ+1

(uiℓ
) for 1 ≤ ℓ ≤ k:

0 ≥
∑

1≤ℓ≤k

[

giℓ,jℓ
(vjℓ

)− giℓ,jℓ+1
(vjℓ+1

)
]

= vj − vj′ +N
∑

1≤ℓ≤k

(

biℓ,jℓ+1
− biℓ,jℓ

)

= (vj − sj) +N







b0,j +
∑

1≤ℓ≤k

biℓ,jℓ+1



−



b0,j′ +
∑

1≤ℓ≤k

biℓ,jℓ







 , (15)

where the last equality follows since µ(j′) = 0 implies vj′ = sj′ = b0,j′N . The first term in (15) is

nonnegative by the individual rationality of (u, v). The second term is nonnegative, for otherwise

µ∗ could be augmented along P to yield another matching µ′ such that Pleast(C, µ
′) and WC(µ′)−

WC(µ∗) ≥ N (since all b values are integers), contradicting the definition of µ∗. Thus, we conclude

that vj = sj .

Case 2: The other endpoint of P is a man i such that µ(i) 6= 0 and µ∗(i) = 0. This case is

identical to case 2 in the proof of Claim (1) above, and hence we conclude that vj = sj .

We now prove Claim (3) of the lemma. Stability of (µ, u, v) implies ui = r′
i if µ(i) = 0. Thus

Claim (3) follows using Claim (1) and Lemma 30.
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Proof of Lemma 21. Let µ∗ be a matching in X such that WC(µ∗) = maxµ′∈X WC(µ′). We show

that WC(µ) = WC(µ∗) and that µ∗ is compatible with the stable payoff (u, v). We have

WC(µ∗) ≥WC(µ) =
∑

µ(i)6=0

fi,µ(i)(ui) +
∑

j∈J

vj + π0(C, µ)

=
∑

µ∗(i)6=0

fi,µ∗(i)(ui) +
∑

j∈J

vj + π0(C, µ∗), (16)

where the first equality follows from Lemma 29, and the second equality follows from Claim (3)

of Lemma 31. Then, by using Claim (2) of Lemma 31 and Lemma 28, we may rewrite (16) as

0 ≥
∑

µ∗(i)6=0

fi,µ∗(i)(ui) +
∑

µ∗(j)6=0

gµ∗(j),j(vj) =
∑

µ∗(i)=j∧j 6=0

[fi,j(ui) + gi,j(vj)] . (17)

Then, since the stability of (u, v) implies that fi,j(ui) + gi,j(vj) ≥ 0 for each man-woman pair

(i, j), we deduce the following: the inequality of (17) is tight, and hence that of (16) is also tight;

fi,j(ui) + gi,j(vj) = 0 for each man-woman pair (i, j) matched in µ∗. Thus, Claims (1) and (2) of

Lemma 31 imply that µ∗ is compatible with the stable payoff (u, v).

D College Admissions with Indifferences

Our results for stable marriage markets with indifferences can be extended to college admissions

markets with indifferences by transforming each student to a man and each slot of a college to a

woman, in a standard fashion. For the sake of completeness, below we provide the formal definition

of the model for college admissions markets with indifferences and summarize our results.

The college admissions market involves a set I of students and a set J of colleges. We assume

that the sets I and J are disjoint and do not contain the element 0, which we use to denote being

unmatched. The preference relation of each student i ∈ I is specified by a binary relation �i over

J ∪ {0} that satisfies transitivity and totality. Similarly, the preference relation of each college

j ∈ J over individual students is specified by a binary relation �j over I ∪ {0} that satisfies

transitivity and totality. Furthermore, each college j ∈ J is associated with a capacity cj . We

denote this college admissions market as (I, J, (�i)i∈I , (�j)j∈J , c).
The colleges’ preference relations over individual students can be extended to group preference

relations using the notion of responsiveness introduced by Roth [19]. We say that a transitive

and reflexive relation �′
j over the power set 2I is responsive to the preference relation �j if the

following conditions hold.

1. For any I0 ⊆ I and i1 ∈ I \ I0, we have i1 �j 0 if and only if I0 ∪ {i1} �
′
j I0.

2. For any I0 ⊆ I and i1, i2 ∈ I \ I0, we have i1 �j i2 if and only if I0 ∪ {i1} �
′
j I0 ∪ {i2}.

Furthermore, we say that a relation �′
j is minimally responsive3 to the preference relation �j if

it is responsive to the preference relation �j and does not strictly contain another relation that is

responsive to the preference relation �j .

3 Our notion of minimal responsiveness is the same as that studied by Erdil and Ergin [9, 10], Chen [2], Chen and

Ghosh [3], and Kamiyama [14], though they did not use this terminology.
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A (capacitated) matching is a function µ : I → J ∪ {0} such that for any college j ∈ J , we

have µ(i) = j for at most cj students i ∈ I . Given a matching µ and a college j ∈ J , we denote

µ(j) = {i ∈ I : µ(i) = j}.
A matching µ is individually rational if j �i 0 and i �j 0 for every student i ∈ I and college

j ∈ J such that µ(i) = j. An individually rational matching µ is weakly stable if for any student

i ∈ I and college j ∈ J , either µ(i) �i j or both of the following conditions hold.

1. For every student i′ ∈ I such that µ(i′) = j, we have i′ �j i.

2. Either |µ(j)| = cj or 0 �j i.

(Otherwise, such a student i and college j form a strongly blocking pair.)

Let (�′
j)j∈J be the group preferences associated with the colleges. For any matchings µ and µ′,

we say that the binary relation µ � µ′ holds if µ(i) �i µ
′(i) and µ(j) �′

j µ
′(j) for every student

i ∈ I and college j ∈ J . A weakly stable matching µ is Pareto-stable if for every matching µ′

such that µ′ � µ, we have µ � µ′. (Otherwise, the matching µ is not Pareto-optimal because it is

Pareto-dominated by the matching µ′.)

A mechanism is an algorithm that, given a college admissions market (I, J, (�i)i∈I , (�j)j∈J , c),
produces a matching µ. A mechanism is said to be group strategyproof (for the students) if for any

two different preference profiles (�i)i∈I and (�′
i)i∈I , there exists a student i0 ∈ I with prefer-

ence relation �i0
different from �′

i0
such that µ(i0) �i0

µ′(i0), where µ and µ′ are the matchings

produced by the mechanism given (I, J, (�i)i∈I , (�j)j∈J , c) and (I, J, (�′
i)i∈I , (�j)j∈J , c), respec-

tively. (Such a student i0 belongs to the coalition but is not matched to a strictly preferred college

by expressing preference relation �′
i0

instead of his true preference relation �i0
.)

Given a college admissions market (I, J, (�i)i∈I , (�j)j∈J , c), we can construct a tiered-slope

market M = (I, J∗, π, N, λ, a, b) with the set of men being the set I of students and the set of

women being the set

J∗ = {(j, k) ∈ J × Z : 1 ≤ k ≤ cj}

of available slots in the colleges in a similar way as described in Sect. 3. If j∗
1 = (j, k1) and

j∗
2 = (j, k2) are slots in the same college j, then we simply have bi,j∗

1
= bi,j∗

2
for every i ∈ I ∪ {0}

and ai,j∗

1
= ai,j∗

2
for every i ∈ I . So, if college j weakly prefers a subset I1 of students to another

subset I2 of students under its minimally responsive preferences, then the total utility of college j
for the students in I1 plus the utilities for its unmatched slots is greater than or equal to that of I2.

Using this tiered-slope market M, we can compute a man-optimal outcome (µ∗, u, v). The

matching µ∗ from students in I to slots in J∗ ∪ {0} induces a matching µ from students in I to

colleges in J ∪ {0}. Pareto-stability, group strategyproofness, and polynomial-time computability

all generalize to the college admissions setting in a straightforward manner. The theorem below

summarizes these results.

Theorem 6. There exists a polynomial-time algorithm that corresponds to a group strategyproof

and Pareto-stable mechanism for the college admissions market with indifferences, assuming that

the group preferences of the colleges are minimally responsive.
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