Skip to main content

WeiboFinder: A Topic-Based Chinese Word Finding and Learning System

  • Conference paper
  • First Online:
Advances in Web-Based Learning – ICWL 2017 (ICWL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10473))

Included in the following conference series:

Abstract

With the explosive growth of user-generated data in social media websites such as Twitter and Weibo, a lot of research has been conducted on using user-generated data for web-based learning. Finding users’ desired data in an effective way is critical for language learners. Social media websites provide diversified data for language learners and some new words such as cyberspeak could only be learned in these online communities. In this paper, we present a system called WeiboFinder to suggest topic-based words and documents related to a target word for Chinese learners. All the words and documents are from the Chinese social media website: Weibo. Weibo is one of the largest microblog social meida websites in China which has similar functions as Twitter. The experimental results show that the proposed method is effective and better than other methods. The topics from our method are more interpretable and topic-based words are useful for Chinese learners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G.: Finding high-quality content in social media. In: Proceedings of the 2008 International Conference on Web Search and Data Mining, pp. 183–194. ACM (2008)

    Google Scholar 

  2. Ahmad, K., Cheng, D., Almas, Y.: Multi-lingual sentiment analysis of financial news streams. In: Proceedings of the 1st International Conference on Grid in Finance (2006)

    Google Scholar 

  3. Andrzejewski, D., Zhu, X., Craven, M.: Incorporating domain knowledge into topic modeling via dirichlet forest priors. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 25–32. ACM (2009)

    Google Scholar 

  4. Burns, N., Bi, Y., Wang, H., Anderson, T.: Extended twofold-LDA model for two aspects in one sentence. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012. CCIS, vol. 298, pp. 265–275. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31715-6_29

    Chapter  Google Scholar 

  5. Chen, Z., Mukherjee, A., Liu, B., Hsu, M., Castellanos, M., Ghosh, R.: Discovering coherent topics using general knowledge. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, pp. 209–218. ACM (2013)

    Google Scholar 

  6. Faizi, R., El Afia, A., Chiheb, R.: Exploring the potential benefits of using social media in education. iJEP 3(4), 50–53 (2013)

    Google Scholar 

  7. Faizi, R., El Afia, A., Chiheb, R.: Social media: an optimal virtual environment for learning foreign languages. iJET 9(5), 64–66 (2014)

    Google Scholar 

  8. Fan, R., Zhao, J., Chen, Y., Xu, K.: Anger is more influential than joy: sentiment correlation in Weibo. PLoS ONE 9(10), e110184 (2014)

    Article  Google Scholar 

  9. Gao, Q., Abel, F., Houben, G.-J., Yu, Y.: A comparative study of users’ microblogging behavior on Sina Weibo and Twitter. In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds.) UMAP 2012. LNCS, vol. 7379, pp. 88–101. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31454-4_8

    Chapter  Google Scholar 

  10. Hu, M., Liu, B.: Mining opinion features in customer reviews. AAAI 4, 755–760 (2004)

    Google Scholar 

  11. Huckin, T., Coady, J.: Incidental vocabulary acquisition in a second language. Stud. Second Lang. Acquis. 21(02), 181–193 (1999)

    Article  Google Scholar 

  12. Jo, Y., Oh, A.H.: Aspect and sentiment unification model for online review analysis. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 815–824. ACM (2011)

    Google Scholar 

  13. Yang, K., Cai, Y., Chen, Z., Leung, H.F., Lau, R.Y.: Exploring topic discriminating power of words in latent dirichlet allocation. In: COLING, pp. 2238–2247 (2016)

    Google Scholar 

  14. Lee, M.J., McLoughlin, C.: Teaching and learning in the web 2.0 era: empowering students through learner-generated content. Int. J. Instr. Technol. Distance Learn. 4(10), 21–34 (2007)

    Google Scholar 

  15. Liang, H., Tsai, F.S., Kwee, A.T.: Detecting novel business blogs. In: Proceedings of the 7th International Conference on Information (2009)

    Google Scholar 

  16. Liu, X., Ye, S., Li, X., Luo, Y., Rao, Y.: ZhihuRank: a topic-sensitive expert finding algorithm in community question answering websites. In: Li, F.W.B., Klamma, R., Laanpere, M., Zhang, J., Manjón, B.F., Lau, R.W.H. (eds.) ICWL 2015. LNCS, vol. 9412, pp. 165–173. Springer, Cham (2015). doi:10.1007/978-3-319-25515-6_15

    Chapter  Google Scholar 

  17. Mimno, D., Wallach, H.M., Talley, E., Leenders, M., McCallum, A.: Optimizing semantic coherence in topic models. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 262–272. Association for Computational Linguistics (2011)

    Google Scholar 

  18. Mukherjee, A., Liu, B.: Aspect extraction through semi-supervised modeling. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers, vol. 1, pp. 339–348. Association for Computational Linguistics (2012)

    Google Scholar 

  19. Peng, F., Feng, F., McCallum, A.: Chinese segmentation and new word detection using conditional random fields. In: Proceedings of the 20th International Conference on Computational Linguistics, p. 562. Association for Computational Linguistics (2004)

    Google Scholar 

  20. Wang, T., Cai, Y., Leung, H.f., Cai, Z., Min, H.: Entropy-based term weighting schemes for text categorization in VSM. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 325–332. IEEE (2015)

    Google Scholar 

  21. Wilson, A.T., Chew, P.A.: Term weighting schemes for latent dirichlet allocation. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 465–473. Association for Computational Linguistics (2010)

    Google Scholar 

  22. Xie, H., Zou, D., Lau, R.Y., Wang, F.L., Wong, T.L.: Generating incidental word-learning tasks via topic-based and load-based profiles. IEEE Multimed. 23(1), 60–70 (2016)

    Article  Google Scholar 

  23. Yang, F., Liu, Y., Yu, X., Yang, M.: Automatic detection of rumor on Sina Weibo. In: Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, p. 13. ACM (2012)

    Google Scholar 

  24. Zou, D., Xie, H., Wong, T.-L., Rao, Y., Wang, F.L., Wu, Q.: Predicting pre-knowledge on vocabulary from e-Learning assignments for language learners. In: Gong, Z., Chiu, D.K.W., Zou, D. (eds.) ICWL 2015. LNCS, vol. 9584, pp. 111–117. Springer, Cham (2016). doi:10.1007/978-3-319-32865-2_12

    Chapter  Google Scholar 

  25. Zourou, K.: On the attractiveness of social media for language learning: a look at the state of the art. Alsic. Apprentissage des Langues et Systèmes d’Information et de Communication 15(1) (2012)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Fundamental Research Funds for the Central Universities, SCUT (NO. 2017ZD0482015ZM136), Tiptop Scientific and Technical Innovative Youth Talents of Guangdong special support program (No. 2015TQ01X633), Science and Technology Planning Project of Guangdong Province, China (No. 2016A030310423), Science and Technology Program of Guangzhou (International Science & Technology Cooperation Program No. 201704030076) and Science and Technology Planning Major Project of Guangdong Province (No. 2015A070711001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhao Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chen, W. et al. (2017). WeiboFinder: A Topic-Based Chinese Word Finding and Learning System. In: Xie, H., Popescu, E., Hancke, G., Fernández Manjón, B. (eds) Advances in Web-Based Learning – ICWL 2017. ICWL 2017. Lecture Notes in Computer Science(), vol 10473. Springer, Cham. https://doi.org/10.1007/978-3-319-66733-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66733-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66732-4

  • Online ISBN: 978-3-319-66733-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics