Abstract
Models of nucleic acid thermal stability are calibrated to a wide range of experimental observations, and typically predict equilibrium probabilities of nucleic acid secondary structures with reasonable accuracy. By comparison, a similar calibration and evaluation of nucleic acid kinetic models to a broad range of measurements has not been attempted so far. We introduce an Arrhenius model of interacting nucleic acid kinetics that relates the activation energy of a state transition with the immediate local environment of the affected base pair. Our model can be used in stochastic simulations to estimate kinetic properties and is consistent with existing thermodynamic models. We infer parameters for our model using an ensemble Markov chain Monte Carlo (MCMC) approach on a training dataset with 320 kinetic measurements of hairpin closing and opening, helix association and dissociation, bubble closing and toehold-mediated strand exchange. Our new model surpasses the performance of the previously established Metropolis model both on the training set and on a testing set of size 56 composed of toehold-mediated 3-way strand displacement with mismatches and hairpin opening and closing rates: reaction rates are predicted to within a factor of three for \(93.4\%\) and \(78.5\%\) of reactions for the training and testing sets, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aalberts, D.P., Parman, J.M., Goddard, N.L.: Single-strand stacking free energy from DNA beacon kinetics. Biophys. J. 84, 3212–3217 (2003)
Altan-Bonnet, G., Libchaber, A., Krichevsky, O.: Bubble dynamics in double-stranded DNA. Phys. Rev. Lett. 90, 138101 (2003)
Andronescu, M., Aguirre-Hernandez, R., Condon, A., Hoos, H.H.: RNAsoft: a suite of RNA secondary structure prediction and design software tools. Nucleic Acids Res. 31, 3416–3422 (2003)
Andronescu, M., Condon, A., Hoos, H.H., Mathews, D.H., Murphy, K.P.: Computational approaches for RNA energy parameter estimation. RNA 16(12), 2304–2318 (2010)
Bonnet, G.: Dynamics of DNA breathing and folding for molecular recognition and computation. Ph.D. thesis, Rockefeller University (2000)
Bonnet, G., Krichevsky, O., Libchaber, A.: Kinetics of conformational fluctuations in DNA hairpin-loops. Proc. Natl. Acad. Sci. 95(15), 8602–8606 (1998)
Chen, S.J.: RNA folding: conformational statistics, folding kinetics, and ion electrostatics. Annu. Rev. Biophys. 37, 197–214 (2008)
Dabby, N.L.: Synthetic molecular machines for active self-assembly: prototype algorithms, designs, and experimental study. Ph.D. thesis, California Institute of Technology (2013)
Flamm, C., Fontana, W., Hofacker, I.L., Schuster, P.: RNA folding at elementary step resolution. RNA 6, 325–338 (2000)
Foreman-Mackey, D., Hogg, D.W., Lang, D., Goodman, J.: emcee: the MCMC hammer. Publ. Astron. Soc. Pacific 125, 306 (2013)
Gibbs, J., DiMarzio, E.: Statistical mechanics of helix-coil transitions in biological macromolecules. J. Chem. Phys. 30, 271–282 (1959)
Hofacker, I.L.: Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429–3431 (2003)
Jeffreys, H.: An invariant form for the prior probability in estimation problems. Proc. Roy. Soc. Lond. A Math. Phys. Eng. Sci. 186, 453–461 (1946). The Royal Society
Kim, J., Doose, S., Neuweiler, H., Sauer, M.: The initial step of DNA hairpin folding: a kinetic analysis using fluorescence correlation spectroscopy. Nucleic Acids Res. 34, 2516–2527 (2006)
Machinek, R.R., Ouldridge, T.E., Haley, N.E., Bath, J., Turberfield, A.J.: Programmable energy landscapes for kinetic control of DNA strand displacement. Nat. Commun. 5, 5324 (2014)
Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288(5), 911–940 (1999)
Morrison, L.E., Stols, L.M.: Sensitive fluorescence-based thermodynamic and kinetic measurements of DNA hybridization in solution. Biochemistry 32, 3095–3104 (1993)
Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)
Reynaldo, L.P., Vologodskii, A.V., Neri, B.P., Lyamichev, V.I.: The kinetics of oligonucleotide replacements. J. Mol. Biol. 297, 511–520 (2000)
Schaeffer, J.M.: Stochastic simulation of the kinetics of multiple interacting nucleic acid strands. Ph.D. thesis, California Institute of Technology (2012)
Schaeffer, J.M., Thachuk, C., Winfree, E.: Stochastic simulation of the kinetics of multiple interacting nucleic acid strands. In: Proceedings of the 21st International Conference on DNA Computing and Molecular Programming, vol. 9211 (2015)
Schreck, J.S., Ouldridge, T.E., Romano, F., Šulc, P., Shaw, L.P., Louis, A.A., Doye, J.P.: DNA hairpins destabilize duplexes primarily by promoting melting rather than by inhibiting hybridization. Nucleic Acids Res. 43(13), 6181–6190 (2015)
Srinivas, N., Ouldridge, T.E., Šulc, P., Schaeffer, J.M., Yurke, B., Louis, A.A., Doye, J.P., Winfree, E.: On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res. 41, 10641–10658 (2013)
Suhov, Y., Kelbert, M.: Probability and Statistics by Example. Volume 2: Markov Chains: A Primer in Random Processes and Their Applications, vol. 2. Cambridge University Press, Cambridge (2008)
Xayaphoummine, A., Bucher, T., Isambert, H.: Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots. Nucleic Acids Res. 33, W605–W610 (2005)
Xu, Z.Z., Mathews, D.H.: Experiment-assisted secondary structure prediction with RNAstructure. RNA Struct. Determ. Methods Protoc. 1490, 163–176 (2016)
Zadeh, J.N., Steenberg, C.D., Bois, J.S., Wolfe, B.R., Pierce, M.B., Khan, A.R., Dirks, R.M., Pierce, N.A.: NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011)
Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009)
Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003)
Acknowledgements
We thank the U.S. National Science Foundation (awards 0832824, 1213127, 1317694, 1643606), the Gordon and Betty Moore Foundation’s Programmable Molecular Technology Initiative, and the Natural Sciences and Engineering Research Council of Canada for support. We also thank the anonymous reviewers for their helpful comments and suggestions. XR’s current address is Descartes Labs, Los Alamos, NM, USA.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zolaktaf, S. et al. (2017). Inferring Parameters for an Elementary Step Model of DNA Structure Kinetics with Locally Context-Dependent Arrhenius Rates. In: Brijder, R., Qian, L. (eds) DNA Computing and Molecular Programming. DNA 2017. Lecture Notes in Computer Science(), vol 10467. Springer, Cham. https://doi.org/10.1007/978-3-319-66799-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-66799-7_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66798-0
Online ISBN: 978-3-319-66799-7
eBook Packages: Computer ScienceComputer Science (R0)