Skip to main content

Inferring Parameters for an Elementary Step Model of DNA Structure Kinetics with Locally Context-Dependent Arrhenius Rates

  • Conference paper
  • First Online:
Book cover DNA Computing and Molecular Programming (DNA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10467))

Included in the following conference series:

Abstract

Models of nucleic acid thermal stability are calibrated to a wide range of experimental observations, and typically predict equilibrium probabilities of nucleic acid secondary structures with reasonable accuracy. By comparison, a similar calibration and evaluation of nucleic acid kinetic models to a broad range of measurements has not been attempted so far. We introduce an Arrhenius model of interacting nucleic acid kinetics that relates the activation energy of a state transition with the immediate local environment of the affected base pair. Our model can be used in stochastic simulations to estimate kinetic properties and is consistent with existing thermodynamic models. We infer parameters for our model using an ensemble Markov chain Monte Carlo (MCMC) approach on a training dataset with 320 kinetic measurements of hairpin closing and opening, helix association and dissociation, bubble closing and toehold-mediated strand exchange. Our new model surpasses the performance of the previously established Metropolis model both on the training set and on a testing set of size 56 composed of toehold-mediated 3-way strand displacement with mismatches and hairpin opening and closing rates: reaction rates are predicted to within a factor of three for \(93.4\%\) and \(78.5\%\) of reactions for the training and testing sets, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aalberts, D.P., Parman, J.M., Goddard, N.L.: Single-strand stacking free energy from DNA beacon kinetics. Biophys. J. 84, 3212–3217 (2003)

    Article  Google Scholar 

  2. Altan-Bonnet, G., Libchaber, A., Krichevsky, O.: Bubble dynamics in double-stranded DNA. Phys. Rev. Lett. 90, 138101 (2003)

    Article  Google Scholar 

  3. Andronescu, M., Aguirre-Hernandez, R., Condon, A., Hoos, H.H.: RNAsoft: a suite of RNA secondary structure prediction and design software tools. Nucleic Acids Res. 31, 3416–3422 (2003)

    Article  Google Scholar 

  4. Andronescu, M., Condon, A., Hoos, H.H., Mathews, D.H., Murphy, K.P.: Computational approaches for RNA energy parameter estimation. RNA 16(12), 2304–2318 (2010)

    Article  Google Scholar 

  5. Bonnet, G.: Dynamics of DNA breathing and folding for molecular recognition and computation. Ph.D. thesis, Rockefeller University (2000)

    Google Scholar 

  6. Bonnet, G., Krichevsky, O., Libchaber, A.: Kinetics of conformational fluctuations in DNA hairpin-loops. Proc. Natl. Acad. Sci. 95(15), 8602–8606 (1998)

    Article  Google Scholar 

  7. Chen, S.J.: RNA folding: conformational statistics, folding kinetics, and ion electrostatics. Annu. Rev. Biophys. 37, 197–214 (2008)

    Article  Google Scholar 

  8. Dabby, N.L.: Synthetic molecular machines for active self-assembly: prototype algorithms, designs, and experimental study. Ph.D. thesis, California Institute of Technology (2013)

    Google Scholar 

  9. Flamm, C., Fontana, W., Hofacker, I.L., Schuster, P.: RNA folding at elementary step resolution. RNA 6, 325–338 (2000)

    Article  Google Scholar 

  10. Foreman-Mackey, D., Hogg, D.W., Lang, D., Goodman, J.: emcee: the MCMC hammer. Publ. Astron. Soc. Pacific 125, 306 (2013)

    Article  Google Scholar 

  11. Gibbs, J., DiMarzio, E.: Statistical mechanics of helix-coil transitions in biological macromolecules. J. Chem. Phys. 30, 271–282 (1959)

    Article  Google Scholar 

  12. Hofacker, I.L.: Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429–3431 (2003)

    Article  Google Scholar 

  13. Jeffreys, H.: An invariant form for the prior probability in estimation problems. Proc. Roy. Soc. Lond. A Math. Phys. Eng. Sci. 186, 453–461 (1946). The Royal Society

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, J., Doose, S., Neuweiler, H., Sauer, M.: The initial step of DNA hairpin folding: a kinetic analysis using fluorescence correlation spectroscopy. Nucleic Acids Res. 34, 2516–2527 (2006)

    Article  Google Scholar 

  15. Machinek, R.R., Ouldridge, T.E., Haley, N.E., Bath, J., Turberfield, A.J.: Programmable energy landscapes for kinetic control of DNA strand displacement. Nat. Commun. 5, 5324 (2014)

    Article  Google Scholar 

  16. Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288(5), 911–940 (1999)

    Article  Google Scholar 

  17. Morrison, L.E., Stols, L.M.: Sensitive fluorescence-based thermodynamic and kinetic measurements of DNA hybridization in solution. Biochemistry 32, 3095–3104 (1993)

    Article  Google Scholar 

  18. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  19. Reynaldo, L.P., Vologodskii, A.V., Neri, B.P., Lyamichev, V.I.: The kinetics of oligonucleotide replacements. J. Mol. Biol. 297, 511–520 (2000)

    Article  Google Scholar 

  20. Schaeffer, J.M.: Stochastic simulation of the kinetics of multiple interacting nucleic acid strands. Ph.D. thesis, California Institute of Technology (2012)

    Google Scholar 

  21. Schaeffer, J.M., Thachuk, C., Winfree, E.: Stochastic simulation of the kinetics of multiple interacting nucleic acid strands. In: Proceedings of the 21st International Conference on DNA Computing and Molecular Programming, vol. 9211 (2015)

    Google Scholar 

  22. Schreck, J.S., Ouldridge, T.E., Romano, F., Šulc, P., Shaw, L.P., Louis, A.A., Doye, J.P.: DNA hairpins destabilize duplexes primarily by promoting melting rather than by inhibiting hybridization. Nucleic Acids Res. 43(13), 6181–6190 (2015)

    Article  Google Scholar 

  23. Srinivas, N., Ouldridge, T.E., Šulc, P., Schaeffer, J.M., Yurke, B., Louis, A.A., Doye, J.P., Winfree, E.: On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res. 41, 10641–10658 (2013)

    Article  Google Scholar 

  24. Suhov, Y., Kelbert, M.: Probability and Statistics by Example. Volume 2: Markov Chains: A Primer in Random Processes and Their Applications, vol. 2. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  25. Xayaphoummine, A., Bucher, T., Isambert, H.: Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots. Nucleic Acids Res. 33, W605–W610 (2005)

    Article  Google Scholar 

  26. Xu, Z.Z., Mathews, D.H.: Experiment-assisted secondary structure prediction with RNAstructure. RNA Struct. Determ. Methods Protoc. 1490, 163–176 (2016)

    Article  Google Scholar 

  27. Zadeh, J.N., Steenberg, C.D., Bois, J.S., Wolfe, B.R., Pierce, M.B., Khan, A.R., Dirks, R.M., Pierce, N.A.: NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011)

    Article  Google Scholar 

  28. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009)

    Article  Google Scholar 

  29. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the U.S. National Science Foundation (awards 0832824, 1213127, 1317694, 1643606), the Gordon and Betty Moore Foundation’s Programmable Molecular Technology Initiative, and the Natural Sciences and Engineering Research Council of Canada for support. We also thank the anonymous reviewers for their helpful comments and suggestions. XR’s current address is Descartes Labs, Los Alamos, NM, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Winfree .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zolaktaf, S. et al. (2017). Inferring Parameters for an Elementary Step Model of DNA Structure Kinetics with Locally Context-Dependent Arrhenius Rates. In: Brijder, R., Qian, L. (eds) DNA Computing and Molecular Programming. DNA 2017. Lecture Notes in Computer Science(), vol 10467. Springer, Cham. https://doi.org/10.1007/978-3-319-66799-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66799-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66798-0

  • Online ISBN: 978-3-319-66799-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics