Abstract
In the article the results of three optimization algorithms has been compared. The first is the OFNBee algorithm, which uses the properties of ordered fuzzy numbers (OFN, KFN) and a bee-based model. The second algorithm is the ABC, currently the best-known optimization algorithm based on a bee swarm. The last is the PSO algorithm, a method based on a herd of particles that mimic the behaviors of people or insects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdel-Rahman, Z.: Studies on metaheuristics for continous global optimization problems. Ph.D. thesis, Kyoto University, Japan (2004)
Czerniak, J., Smigielski, G., Ewald, D., Paprzycki, M.: New proposed implementation of ABC method to optimization of water capsule flight. In: Computer Science and Information Systems (FedCSIS), pp. 489–493 (2015)
Czerniak, J., Apiecionek, Ł., Zarzycki, H., Ewald, D.: Proposed caeva simulation method for evacuation of people from a buildings on fire. Adv. Intell. Syst. Comput. 401, 315–326 (2016)
Czerniak, J., Macko, M., Ewald, D.: The cutmag as a new hybrid method for multi-edge grinder design optimization. Adv. Intell. Syst. Comput. 401, 327–337 (2016)
Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report tr06. Erciyes University, Engineering Faculty, Computer Engineering Department (2005)
Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214, 108–132 (2009)
Karaboga, D., Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Advances in Soft Computing: Foundations of Fuzzy Logic and Soft Computing, vol. 4529, pp. 789–798 (2007)
Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)
Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, November 1995
Koles̀nik, R., Prokopowicz, P., Kosiński, W.: Fuzzy calculator – useful tool for programming with fuzzy algebra. In: 7th International Conference on Artificial Intelligence and Soft Computing - ICAISC, Zakopane (2004)
Kosiński, W.: Calculation and reasoning with ordered fuzzy numbers. In: EUSFLAT-LFA 2005 Joint Conference (2005)
Kosiński, W.: On fuzzy number calculus. J. Appl. Math. Comput. Sci. 16(1), 51–57 (2006)
Kosiński, W., Koles̀nik, R., Prokopowicz, P., Frischmuth, K.: On algebra of ordered fuzzy numbers. In: Soft Computing Foundations and Theoretical Aspects, Warszawa, pp. 291–302 (2004)
Kosiński, W., Markowska-Kaczmar, U.: On evolutionary approach for determining defuzzyfication operator. In: Proceedings of the International Multiconferece on Computer Science and Information Technology, pp. 93–101 (2006)
Kosinski, W., Prokopowicz, P., Rosa, A.: Defuzzification functionals of ordered fuzzy numbers. IEEE Trans. Fuzzy Syst. 21, 1163–1169 (2013)
Kosinski, W., Prokopowicz, P., Slezak, D.: Fuzzy reals with algebraic operations: algorithmic approach. In: Proceedings of the Intelligent Information Systems 2002, pp. 311–320 (2002)
Kosiński, W.: Evolutionary algorithm determining defuzzyfication operators. Eng. Appl. Artif. Intell. 20(5), 619–627 (2007). http://www.sciencedirect.com/science/article/pii/S0952197607000413
Mishra, S.: Some new test functions for global optimization and performance of repulsive particle swarm method. ACM Transactions on Modeling and Computer Simulation (2006)
Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), pp. 69–73, May 1998
Taherkhani, M., Safabakhsh, R.: A novel stability-based adaptive inertia weight for particle swarm optimization. Appl. Soft Comput. 38, 281–295 (2016). http://www.sciencedirect.com/science/article/pii/S1568494615006195
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Ewald, D., Czerniak, J.M., Zarzycki, H. (2018). OFNBee Method Used for Solving a Set of Benchmarks. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds) Advances in Fuzzy Logic and Technology 2017. EUSFLAT IWIFSGN 2017 2017. Advances in Intelligent Systems and Computing, vol 642. Springer, Cham. https://doi.org/10.1007/978-3-319-66824-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-66824-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66823-9
Online ISBN: 978-3-319-66824-6
eBook Packages: EngineeringEngineering (R0)