Skip to main content

OFNBee Method Used for Solving a Set of Benchmarks

  • Conference paper
  • First Online:
Advances in Fuzzy Logic and Technology 2017 (EUSFLAT 2017, IWIFSGN 2017)

Abstract

In the article the results of three optimization algorithms has been compared. The first is the OFNBee algorithm, which uses the properties of ordered fuzzy numbers (OFN, KFN) and a bee-based model. The second algorithm is the ABC, currently the best-known optimization algorithm based on a bee swarm. The last is the PSO algorithm, a method based on a herd of particles that mimic the behaviors of people or insects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdel-Rahman, Z.: Studies on metaheuristics for continous global optimization problems. Ph.D. thesis, Kyoto University, Japan (2004)

    Google Scholar 

  2. Czerniak, J., Smigielski, G., Ewald, D., Paprzycki, M.: New proposed implementation of ABC method to optimization of water capsule flight. In: Computer Science and Information Systems (FedCSIS), pp. 489–493 (2015)

    Google Scholar 

  3. Czerniak, J., Apiecionek, Ł., Zarzycki, H., Ewald, D.: Proposed caeva simulation method for evacuation of people from a buildings on fire. Adv. Intell. Syst. Comput. 401, 315–326 (2016)

    Google Scholar 

  4. Czerniak, J., Macko, M., Ewald, D.: The cutmag as a new hybrid method for multi-edge grinder design optimization. Adv. Intell. Syst. Comput. 401, 327–337 (2016)

    Google Scholar 

  5. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report tr06. Erciyes University, Engineering Faculty, Computer Engineering Department (2005)

    Google Scholar 

  6. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214, 108–132 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Karaboga, D., Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Advances in Soft Computing: Foundations of Fuzzy Logic and Soft Computing, vol. 4529, pp. 789–798 (2007)

    Google Scholar 

  8. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)

    Article  Google Scholar 

  10. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, November 1995

    Google Scholar 

  11. Koles̀nik, R., Prokopowicz, P., Kosiński, W.: Fuzzy calculator – useful tool for programming with fuzzy algebra. In: 7th International Conference on Artificial Intelligence and Soft Computing - ICAISC, Zakopane (2004)

    Google Scholar 

  12. Kosiński, W.: Calculation and reasoning with ordered fuzzy numbers. In: EUSFLAT-LFA 2005 Joint Conference (2005)

    Google Scholar 

  13. Kosiński, W.: On fuzzy number calculus. J. Appl. Math. Comput. Sci. 16(1), 51–57 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Kosiński, W., Koles̀nik, R., Prokopowicz, P., Frischmuth, K.: On algebra of ordered fuzzy numbers. In: Soft Computing Foundations and Theoretical Aspects, Warszawa, pp. 291–302 (2004)

    Google Scholar 

  15. Kosiński, W., Markowska-Kaczmar, U.: On evolutionary approach for determining defuzzyfication operator. In: Proceedings of the International Multiconferece on Computer Science and Information Technology, pp. 93–101 (2006)

    Google Scholar 

  16. Kosinski, W., Prokopowicz, P., Rosa, A.: Defuzzification functionals of ordered fuzzy numbers. IEEE Trans. Fuzzy Syst. 21, 1163–1169 (2013)

    Article  Google Scholar 

  17. Kosinski, W., Prokopowicz, P., Slezak, D.: Fuzzy reals with algebraic operations: algorithmic approach. In: Proceedings of the Intelligent Information Systems 2002, pp. 311–320 (2002)

    Google Scholar 

  18. Kosiński, W.: Evolutionary algorithm determining defuzzyfication operators. Eng. Appl. Artif. Intell. 20(5), 619–627 (2007). http://www.sciencedirect.com/science/article/pii/S0952197607000413

    Article  Google Scholar 

  19. Mishra, S.: Some new test functions for global optimization and performance of repulsive particle swarm method. ACM Transactions on Modeling and Computer Simulation (2006)

    Google Scholar 

  20. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), pp. 69–73, May 1998

    Google Scholar 

  21. Taherkhani, M., Safabakhsh, R.: A novel stability-based adaptive inertia weight for particle swarm optimization. Appl. Soft Comput. 38, 281–295 (2016). http://www.sciencedirect.com/science/article/pii/S1568494615006195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawid Ewald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Ewald, D., Czerniak, J.M., Zarzycki, H. (2018). OFNBee Method Used for Solving a Set of Benchmarks. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds) Advances in Fuzzy Logic and Technology 2017. EUSFLAT IWIFSGN 2017 2017. Advances in Intelligent Systems and Computing, vol 642. Springer, Cham. https://doi.org/10.1007/978-3-319-66824-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66824-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66823-9

  • Online ISBN: 978-3-319-66824-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics