Abstract
In this paper a new method for Modular Granular Neural Network (MGNN) optimization with a granular approach is presented. A Particle Swarm Optimization technique is proposed to perform the granulation of information with a fuzzy dynamic parameters adaptation to prevent stagnation. The proposed fuzzy inference system seeks to adjust some PSO parameters such as w, C1 and C2 to ensure that the parameters have adequate values depending on the current behavior of the particles. The objective of the proposed PSO is design optimal MGNN architectures. The modular granular neural networks are applied to human recognition based on iris biometrics, where a benchmark database is used and the objective function in this work is the minimization of the error of recognition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Auda, G., Kamel, M.: Modular neural networks: a survey. Int. J. Neural Syst. 9(2), 129–151 (1999)
Bargiela, A., Pedrycz, W.: The roots of granular computing. In: IEEE International Conference on Granular Computing (GrC), pp. 806–809 (2006)
Castillo, O., Melin, P.: Soft Computing for Control of Non-Linear Dynamical Systems. Springer, Heidelberg (2001)
Database of Human Iris. Institute of Automation of Chinese Academy of Sciences (CASIA). http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp. Accessed 12 Nov 2015
Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)
Geem, Z.W., Yang, X.S., Tseng, C.L.: Harmony search and nature-inspired algorithms for engineering optimization. J. Appl. Math. 2013, 438158:1–438158:2 (2013)
Hassoun, M.: Fundamentals of Artificial Neural Networks. A Bradford Book, Cambridge (2003)
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)
Jamal, A.: Granular computing. Int. J. Res. Cloud Eng. 2(3), 29–40 (2015)
Jang, J., Sun, C., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice Hall, New Jersey (1997)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Joint Conference on Neuronal Networks. IEEE Press, pp. 1942–1948 (1995)
Khan, A., Bandopadhyaya, T., Sharma, S.: classification of stocks using self organizing map. Int. J. Soft Comput. Appl. 4, 19–24 (2009)
Lucic, P., Teodorovic, D.: Bee system: modeling combinatorial optimization transportation engineering problems by swarm intelligence. In: Preprints of the TRISTAN IV Triennial Symposium on Transportation Analysis, pp. 441–445 (2001)
Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing: An Evolutionary Approach for Neural Networks and Fuzzy Systems, 1st edn., pp. 119–122. Springer (2005)
Okamura, M., Kikuchi, H., Yager, R., Nakanishi, S.: Character diagnosis of fuzzy systems by genetic algorithm and fuzzy inference. In: Proceedings of the Vietnam-Japan Bilateral Symposium on Fuzzy Systems and Applications, Halong Bay, Vietnam, pp. 468–473 (1998)
Qian, Y., Zhang, H., Li, F., Hu, Q., Liang, J.: Set-based granular computing: A lattice model. Int. J. Approx. Reasoning 55, 834–852 (2014)
Rajabioun, R.: Cuckoo optimization algorithm. Appl. Soft Comput. J. 11, 5508–5518 (2011)
Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)
Rini, D.P., Shamsuddin, S.M., Yuhaniz, S.S.: Particle swarm optimization: technique, system and challenges. Int. J. Comput. Appl. 14(1), 19–27 (2011)
Sánchez, D., Melin, P.: Hierarchical genetic algorithms for type-2 fuzzy system optimization applied to pattern recognition and fuzzy control. In: Recent Advances on Hybrid Approaches for Designing Intelligent Systems, pp. 19–35 (2014)
Saravanan, K., Sasithra, S.: Review on classification based on artificial neural networks. Int. J. Ambient Syst. Appl. (IJASA) 2(4), 11–18 (2014)
Witten, I., Frank, E., Hall, E.: Fuzzy Logic for the Management of Uncertainty. Morgan Kaufmann, San Mateo (2011)
Yao, Y.Y.: On modeling data mining with granular computing. In: 25th International Computer Software and Applications Conference (COMPSAC), pp. 638–649 (2001)
Yao, Y.: Perspectives of granular computing. In: IEEE International Conference on Granular Computing (GrC), pp. 85–90 (2005)
Zadeh, L., Kacprzyk, J.: Fuzzy Logic for the Management of Uncertainty. Wiley-Interscience, New York (1992)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Sánchez, D., Melin, P., Castillo, O. (2018). Particle Swarm Optimization with Fuzzy Dynamic Parameters Adaptation for Modular Granular Neural Networks. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds) Advances in Fuzzy Logic and Technology 2017. EUSFLAT IWIFSGN 2017 2017. Advances in Intelligent Systems and Computing, vol 643. Springer, Cham. https://doi.org/10.1007/978-3-319-66827-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-66827-7_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66826-0
Online ISBN: 978-3-319-66827-7
eBook Packages: EngineeringEngineering (R0)