Skip to main content

Proof Theory for Indexed Nested Sequents

  • Conference paper
  • First Online:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10501))

  • 554 Accesses

Abstract

Fitting’s indexed nested sequents can be used to give deductive systems to modal logics which cannot be captured by pure nested sequents. In this paper we show how the standard cut-elimination procedure for nested sequents can be extended to indexed nested sequents, and we discuss how indexed nested sequents can be used for intuitionistic modal logics.

S. Marin—Supported by ERC Advanced Grant “ProofCert”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is the variant of \(\mathsf {IK}\) first mentioned in [5] and [20] and studied in detail in [25]. There are many more variants of intuitionistic modal logic, e.g. [2, 6, 19, 22]. Another popular variant is constructive modal logic (e.g. [17]), which rejects axioms \(\mathsf {k_{3}}\)-\(\mathsf {k_{5}}\) in (7) and only allows \(\mathsf {k_{1}}\) and \(\mathsf {k_{2}}\). It has a different cut-elimination proof in nested sequents [1]. For this reason we work in this paper with \(\mathsf {IK}\) which allows all of \(\mathsf {k_{1}}\)\(\mathsf {k_{5}}\).

  2. 2.

    Indeed, like \(\mathsf {iNK_2}\) and \(\mathsf {iNIK}\), Negri’s [18] system for classical logic \(\mathsf {K}\) can be seen as the classical variant of Simpson’s system [25] for intuitionistic logic \(\mathsf {IK}\). Then the same structural rules can be added to each system to extend it to geometric axioms, so in particular to Scott-Lemmon axioms.

  3. 3.

    One might consider this definition unsatisfactory as it is not a pure frame condition, but we have to leave a detailed study of this issue to future research.

  4. 4.

    We define the composition of two relations RS on a set W as usual: \(R\circ S=\{(w,v)\mid \exists u.\;(wRu \wedge uSv)\} \). \(R^n\) stands for R composed n times with itself.

References

  1. Arisaka, R., Das, A., Straßburger, L.: On nested sequents for constructive modal logic. LMCS 11(3:7), 1–33 (2015)

    MATH  MathSciNet  Google Scholar 

  2. Bierman, G., de Paiva, V.: On an intuitionistic modal logic. Stud. Log. 65(3), 383–416 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Log. 48(6), 551–577 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fischer Servi, G.: Semantics for a class of intuitionistic modal calculi. In: Dalla Chiara, M.L. (ed.) Italian Studies in the Philosophy of Science. Boston Studies in the Philosophy of Science, vol. 47, pp. 59–72. Springer, Dordrecht (1980). doi:10.1007/978-94-009-8937-5_5

    Chapter  Google Scholar 

  5. Fischer Servi, G.: Axiomatizations for some intuitionistic modal logics. Rend. Sem. Mat. Univers. Politecn. Torino 42(3) (1984)

    Google Scholar 

  6. Fitch, F.B.: Intuitionistic modal logic with quantifiers. Port. Math. 7(2), 113–118 (1948)

    MATH  MathSciNet  Google Scholar 

  7. Fitting, M.: Cut-free proof systems for Geach logics. IfCoLog J. Log. Their Appl. 2(2), 17–64 (2015)

    Google Scholar 

  8. Galmiche, D., Salhi, Y.: Label-free natural deduction systems for intuitionistic and classical modal logics. J. Appl. Non-Class. Log. 20(4), 373–421 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gentzen, G.: Untersuchungen über das logische Schließen. I. Mathematische Zeitschrift 39 (1934)

    Google Scholar 

  10. Goré, R., Postniece, L., Tiu, A.: On the correspondence between display postulates and deep inference in nested sequent calculi for tense logics. LMCS 7(2:8), 1–38 (2011)

    MATH  MathSciNet  Google Scholar 

  11. Goré, R., Ramanayake, R.: Labelled tree sequents, tree hypersequents and nested (deep) sequents. AIML 9, 279–299 (2012)

    MATH  MathSciNet  Google Scholar 

  12. Kashima, R.: Cut-free sequent calculi for some tense logics. Stud. Log. 53(1), 119–135 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lamarche, F.: On the algebra of structural contexts. Math. Struct. Comput. Sci. (2001, accepted)

    Google Scholar 

  14. Lemmon, E.J., Scott, D.S.: An Introduction to Modal Logic. Blackwell, Oxford (1977)

    MATH  Google Scholar 

  15. Marin, S., Straßburger, L.: Label-free modular systems for classical and intuitionistic modal logics. AIML 10, 387–406 (2014)

    MathSciNet  Google Scholar 

  16. Marin, S., Straßburger, L.: On the proof theory of indexed nested sequents for classical and intuitionistic modal logics. Research Report RR-9061, Inria Saclay (2017). https://hal.inria.fr/hal-01515797

  17. Mendler, M., Scheele, S.: Cut-free Gentzen calculus for multimodal CK. Inf. Comput. 209(12), 1465–1490 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Negri, S.: Proof analysis in modal logics. J. Phil. Log. 34, 507–544 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Math. Struct. Comput. Sci. 11(4), 511–540 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Plotkin, G., Stirling, C.: A framework for intuitionistic modal logic. In: Theoretical Aspects of Reasoning About Knowledge (1986)

    Google Scholar 

  21. Poggiolesi, F.: The method of tree-hypersequents for modal propositional logic. In: Makinson, D., Malinowski, J., Wansing, H. (eds.) Towards Mathematical Philosophy. Trends in Logic, vol. 28. Springer, Dordrecht (2009). doi:10.1007/978-1-4020-9084-4_3

    Chapter  Google Scholar 

  22. Prawitz, D.: Natural Deduction, A Proof-Theoretical Study. Almqvist & Wiksell, Stockholm (1965)

    MATH  Google Scholar 

  23. Ramanayake, R.: Inducing syntactic cut-elimination for indexed nested sequents. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 416–432. Springer, Cham (2016). doi:10.1007/978-3-319-40229-1_29

    Google Scholar 

  24. Russo, A.: Generalising propositional modal logic using labelled deductive systems. In: Baader, F., Schulz, K.U. (eds.) Frontiers of Combining Systems. Applied Logic Series, vol. 3. Springer, Dordrecht (1996). doi:10.1007/978-94-009-0349-4_2

    Chapter  Google Scholar 

  25. Simpson, A.: The proof theory and semantics of intuitionistic modal logic. Ph.D. thesis, University of Edinburgh (1994)

    Google Scholar 

  26. Straßburger, L.: Cut elimination in nested sequents for intuitionistic modal logics. In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 209–224. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37075-5_14

    Chapter  Google Scholar 

  27. Viganò, L.: Labelled Non-classical Logic. Kluwer Academic Publisher, Dordrecht (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Marin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Marin, S., Straßburger, L. (2017). Proof Theory for Indexed Nested Sequents. In: Schmidt, R., Nalon, C. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2017. Lecture Notes in Computer Science(), vol 10501. Springer, Cham. https://doi.org/10.1007/978-3-319-66902-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66902-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66901-4

  • Online ISBN: 978-3-319-66902-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics