Abstract
Fitting’s indexed nested sequents can be used to give deductive systems to modal logics which cannot be captured by pure nested sequents. In this paper we show how the standard cut-elimination procedure for nested sequents can be extended to indexed nested sequents, and we discuss how indexed nested sequents can be used for intuitionistic modal logics.
S. Marin—Supported by ERC Advanced Grant “ProofCert”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This is the variant of \(\mathsf {IK}\) first mentioned in [5] and [20] and studied in detail in [25]. There are many more variants of intuitionistic modal logic, e.g. [2, 6, 19, 22]. Another popular variant is constructive modal logic (e.g. [17]), which rejects axioms \(\mathsf {k_{3}}\)-\(\mathsf {k_{5}}\) in (7) and only allows \(\mathsf {k_{1}}\) and \(\mathsf {k_{2}}\). It has a different cut-elimination proof in nested sequents [1]. For this reason we work in this paper with \(\mathsf {IK}\) which allows all of \(\mathsf {k_{1}}\)–\(\mathsf {k_{5}}\).
- 2.
Indeed, like \(\mathsf {iNK_2}\) and \(\mathsf {iNIK}\), Negri’s [18] system for classical logic \(\mathsf {K}\) can be seen as the classical variant of Simpson’s system [25] for intuitionistic logic \(\mathsf {IK}\). Then the same structural rules can be added to each system to extend it to geometric axioms, so in particular to Scott-Lemmon axioms.
- 3.
One might consider this definition unsatisfactory as it is not a pure frame condition, but we have to leave a detailed study of this issue to future research.
- 4.
We define the composition of two relations R, S on a set W as usual: \(R\circ S=\{(w,v)\mid \exists u.\;(wRu \wedge uSv)\} \). \(R^n\) stands for R composed n times with itself.
References
Arisaka, R., Das, A., Straßburger, L.: On nested sequents for constructive modal logic. LMCS 11(3:7), 1–33 (2015)
Bierman, G., de Paiva, V.: On an intuitionistic modal logic. Stud. Log. 65(3), 383–416 (2000)
Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Log. 48(6), 551–577 (2009)
Fischer Servi, G.: Semantics for a class of intuitionistic modal calculi. In: Dalla Chiara, M.L. (ed.) Italian Studies in the Philosophy of Science. Boston Studies in the Philosophy of Science, vol. 47, pp. 59–72. Springer, Dordrecht (1980). doi:10.1007/978-94-009-8937-5_5
Fischer Servi, G.: Axiomatizations for some intuitionistic modal logics. Rend. Sem. Mat. Univers. Politecn. Torino 42(3) (1984)
Fitch, F.B.: Intuitionistic modal logic with quantifiers. Port. Math. 7(2), 113–118 (1948)
Fitting, M.: Cut-free proof systems for Geach logics. IfCoLog J. Log. Their Appl. 2(2), 17–64 (2015)
Galmiche, D., Salhi, Y.: Label-free natural deduction systems for intuitionistic and classical modal logics. J. Appl. Non-Class. Log. 20(4), 373–421 (2010)
Gentzen, G.: Untersuchungen über das logische Schließen. I. Mathematische Zeitschrift 39 (1934)
Goré, R., Postniece, L., Tiu, A.: On the correspondence between display postulates and deep inference in nested sequent calculi for tense logics. LMCS 7(2:8), 1–38 (2011)
Goré, R., Ramanayake, R.: Labelled tree sequents, tree hypersequents and nested (deep) sequents. AIML 9, 279–299 (2012)
Kashima, R.: Cut-free sequent calculi for some tense logics. Stud. Log. 53(1), 119–135 (1994)
Lamarche, F.: On the algebra of structural contexts. Math. Struct. Comput. Sci. (2001, accepted)
Lemmon, E.J., Scott, D.S.: An Introduction to Modal Logic. Blackwell, Oxford (1977)
Marin, S., Straßburger, L.: Label-free modular systems for classical and intuitionistic modal logics. AIML 10, 387–406 (2014)
Marin, S., Straßburger, L.: On the proof theory of indexed nested sequents for classical and intuitionistic modal logics. Research Report RR-9061, Inria Saclay (2017). https://hal.inria.fr/hal-01515797
Mendler, M., Scheele, S.: Cut-free Gentzen calculus for multimodal CK. Inf. Comput. 209(12), 1465–1490 (2011)
Negri, S.: Proof analysis in modal logics. J. Phil. Log. 34, 507–544 (2005)
Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Math. Struct. Comput. Sci. 11(4), 511–540 (2001)
Plotkin, G., Stirling, C.: A framework for intuitionistic modal logic. In: Theoretical Aspects of Reasoning About Knowledge (1986)
Poggiolesi, F.: The method of tree-hypersequents for modal propositional logic. In: Makinson, D., Malinowski, J., Wansing, H. (eds.) Towards Mathematical Philosophy. Trends in Logic, vol. 28. Springer, Dordrecht (2009). doi:10.1007/978-1-4020-9084-4_3
Prawitz, D.: Natural Deduction, A Proof-Theoretical Study. Almqvist & Wiksell, Stockholm (1965)
Ramanayake, R.: Inducing syntactic cut-elimination for indexed nested sequents. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 416–432. Springer, Cham (2016). doi:10.1007/978-3-319-40229-1_29
Russo, A.: Generalising propositional modal logic using labelled deductive systems. In: Baader, F., Schulz, K.U. (eds.) Frontiers of Combining Systems. Applied Logic Series, vol. 3. Springer, Dordrecht (1996). doi:10.1007/978-94-009-0349-4_2
Simpson, A.: The proof theory and semantics of intuitionistic modal logic. Ph.D. thesis, University of Edinburgh (1994)
Straßburger, L.: Cut elimination in nested sequents for intuitionistic modal logics. In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 209–224. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37075-5_14
Viganò, L.: Labelled Non-classical Logic. Kluwer Academic Publisher, Dordrecht (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Marin, S., Straßburger, L. (2017). Proof Theory for Indexed Nested Sequents. In: Schmidt, R., Nalon, C. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2017. Lecture Notes in Computer Science(), vol 10501. Springer, Cham. https://doi.org/10.1007/978-3-319-66902-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-66902-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66901-4
Online ISBN: 978-3-319-66902-1
eBook Packages: Computer ScienceComputer Science (R0)