Abstract
Timetable optimization is essential to the improvement of a bus operating company’s economic profits, quality of service and competitiveness in the market. The most previous researches studied the bus timetabling with assuming the passenger demand is certain but it varies in practice. In this study, we consider a timetable optimization problem of a single bus line under fuzzy environment. Assuming the passenger quantity in per time segment is a fuzzy value, a fuzzy bi-objective programming model that maximizes the total passenger volume and minimizes the total bus travel time under a capacity rate constraint is established. This chance constrained programming model is formulated with the passenger volume and capacity rate under certain chance constraints. Furthermore, a genetic algorithm of variable length is designed to solve the proposed model. Finally, we present a case study that utilizing real data obtained from a major Beijing bus operating company to illustrate the proposed model and algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Guihaire, V., Hao, J.K.: Transit network design and scheduling: a global review. Transp. Res. Part A 42, 1251–1273 (2008). doi:10.1016/j.tra.2008.03.011
Ceder, A., Golany, B., Tal, O.: Creating bus timetables with maximal synchronization. Transp. Res. Part A 35, 913–928 (2001). doi:10.1016/s0965-8564(00)00032-x
Zhao, F., Zeng, X.: Optimization of transit route network, vehicle headways and timetable for large-scale transit networks. Eur. J. Oper. Res. 186, 841–855 (2008). doi:10.1016/j.ejor.2007.02.005
Yan, S.Y., Chen, H.L.: A scheduling model and a solution algorithm for inter-city bus carriers. Transp. Res. Part A 36, 805–825 (2002). doi:10.1016/s0965-8564(01)00041-6
Wu, Y.H., Yang, H., Tang, J.F., Yu, Y.: Multi-objective re-synchronizing of bus timetable: model, complexity and solution. Transp. Res. Part C 67, 149–168 (2016)
Salicrú, M., Fleurent, C., Armengol, J.M.: Timetable-based operation in urban transport: run-time optimisation and improvements in the operating process. Transp. Res. Part A 45, 721–740 (2011). doi:10.1016/j.tra.2011.04.013
Yan, Y.D., Meng, Q., Wang, S.A., Guo, X.C.: Robust optimization model of schedule design for a fixed bus route. Transp. Res. Part C 25, 113–121 (2012). doi:10.1016/j.trc.2012.05.006
Arhin, S., Noel, E., Anderson, M.F., Williams, L., Ribisso, A., Stinson, R.: Optimization of transit total bus stop time models. J. Traffic Transp. Eng. 3(2), 146–153 (2016). doi:10.1016/j.jtte.2015.07.001
Amin-Naseri, M.R., Baradaran, V.: Accurate estimation of average waiting time in public transportation systems. Transp. Sci. 49(2), 213–222 (2014). doi:10.1287/trsc.2013.0514
Parbo, J., Nielsen, O.A., Prato, C.G.: User perspectives in public transport timetable optimisation. Transp. Res. Part C 48, 269–284 (2014). doi:10.1016/j.trc.2014.09.005
Sun, D., Xu, Y., Peng, Z.R.: Timetable optimization for single bus line based on hybrid vehicle size model. J. Traffic Transp. Eng. 2(3), 179–186 (2015). doi:10.1016/j.jtte.2015.03.006
Yan, S.Y., Chi, C.J., Tang, C.H.: Inter-city bus routing and timetable setting under stochastic demands. Transp. Res. Part A 40, 572–586 (2006). doi:10.1016/j.tra.2005.11.006
Vissat, L.L., Clark, A., Gilmore, S.: Finding optimal timetables for Edinburgh bus routes. Electron. Notes Theor. Comput. Sci. 310, 179–199 (2015). doi:10.1016/j.entcs.2014.12.018
Wu, J.F.: A real-time origin-destination matrix updating algorithm for on-line applications. Transp. Res. Part B Methodol. 31(5), 381–396 (1997). doi:10.1016/s0191-2615(97)00001-5
Pedrycz, W., Homenda, W.: Building the fundamentals of granular computing: a principle of justifiable granularity. Appl. Soft Comput. 13(10), 4209–4218 (2013). doi:10.1016/j.asoc.2013.06.017
Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value models. Trans. Fuzzy Syst. 10(4), 445–450 (2002). doi:10.1109/tfuzz.2002.800692
Chriqui, C., Robillard, P.: Common bus lines. Transp. Sci. 9(2), 115–121 (1975). doi:10.1287/trsc.9.2.115
Nguyen, S., Pallottino, A., Malucelli, F.: A modeling framework for passenger assignment on a transport network with timetables. Transp. Sci. 35(3), 238–249 (2001). doi:10.1287/trsc.35.3.238.10152
Cominetti, R., Correa, J.: Common-lines and passenger assignment in congested. Transp. Sci. 35(3), 250–267 (2001). doi:10.1287/trsc.35.3.250.10154
Cepeda, M., Cominetti, R., Florian, M.: A frequency-based assignment model for congested transit networks with strict capacity constraints: Characterization and computation of equilibria. Transp. Res. Part B: Methodol. 40(6), 437–459 (2006). doi:10.1016/j.trb.2005.05.006
Wong, S.C., Tong, C.O.: Estimation of time-dependent origin-destination matrices for transit networks. Transp. Res. Part B: Methodol. 32(1), 35–48 (1998). doi:10.1016/s0191-2615(97)00011-8
Bertini, R.L., El-Geneidy, A.M.: Modeling transit trip time using archived bus dispatch system data. J. Transp. Eng. 130(1), 56–67 (2004). doi:10.1061/(asce)0733-947x
Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Oxford (1975)
Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994). doi:10.1007/bf00175354
Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R.: Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267(3), 727–748 (1997). doi:10.1006/jmbi.1996.0897
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). doi:10.1109/4235.996017
Pedrycz, W., Song, M.: Granular fuzzy models: a study in knowledge management in fuzzy modeling. J. Approx. Reas. 53(7), 1061–1079 (2012). doi:10.1016/j.ijar.2012.05.002
Zhou, J.D., Li, X., Kar, S.: Time consistent fuzzy multi-period rolling portfolio optimization with adaptive risk aversion factor. J. Ambient Intell. Hum. Comput, 1–16 (2017). doi:10.1007/s12652-017-0478-4
Zhu, G.Y., Yang, C.G., Huang, D., Zhang, P.: A combined forecasting model of urban rail transit peak-hour cross-section passenger volume. In: Cota International Conference of Transportation Professionals, pp. 1040–1052 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Du, H., Ma, H., Li, X. (2018). Fuzzy Bi-objective Chance-Constrained Programming Model for Timetable Optimization of a Bus Route. In: Chao, F., Schockaert, S., Zhang, Q. (eds) Advances in Computational Intelligence Systems. UKCI 2017. Advances in Intelligent Systems and Computing, vol 650. Springer, Cham. https://doi.org/10.1007/978-3-319-66939-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-66939-7_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66938-0
Online ISBN: 978-3-319-66939-7
eBook Packages: EngineeringEngineering (R0)