Abstract
Three expert algorithms based on the sales comparison approach worked out for an automated system to aid in real estate appraisal are presented in the paper. Ensemble machine learning models and expert algorithms for real estate appraisal were compared empirically in terms of their accuracy. The evaluation experiments were conducted using real-world data acquired from a cadastral system maintained in a big city in Poland. The characteristics of applied techniques for real estate appraisal are discussed.
Similar content being viewed by others
References
Zurada, J., Levitan, A.S., Guan, J.: A comparison of regression and artificial intelligence methods in a mass appraisal context. J. Real Estate Res. 33(3), 349–388 (2011)
Peterson, S., Flangan, A.B.: Neural network hedonic pricing models in mass real estate appraisal. J. Real Estate Res. 31(2), 147–164 (2009)
Antipov, E.A., Pokryshevskaya, E.B.: Mass appraisal of residential apartments: an application of random forest for valuation and a CART-based approach for model diagnostics. Expert Syst. Appl. 39, 1772–1778 (2012)
Kusan, H., Aytekin, O., Özdemir, I.: The use of fuzzy logic in predicting house selling price. Expert Syst. Appl. 37(3), 1808–1813 (2010)
Kontrimas, V., Verikas, A.: The mass appraisal of the real estate by computational intelligence. Appl. Soft Comput. 11(1), 443–448 (2011)
Musa, A.G., Daramola, O., Owoloko, A., Olugbara, O.: A neural-CBR system for real property valuation. J. Emerg. Trends Comput. Inf. Sci. 4(8), 611–622 (2013)
Jahanshiri, E., Buyong, T., Shariff, A.R.M.: A review of property mass valuation models. Pertanika J. Sci. Technol. 19(S), 23–30 (2011)
McCluskey, W.J., McCord, M., Davis, P.T., Haran, M., McIlhatton, D.: Prediction accuracy in mass appraisal: a comparison of modern approaches. J. Prop. Res. 30(4), 239–265 (2013)
d’Amato, M., Kauko, T. (eds.): Advances in Automated Valuation Modeling AVM: After the Non-agency Mortgage Crisis. Studies in Systems, Decision and Control, vol. 86. Springer, Cham (2017)
Woźniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fus. 16, 3–17 (2014)
Krawczyk, B., Woźniak, M., Cyganek, B.: Clustering-based ensembles for one-class classification. Inf. Sci. 264, 182–195 (2014)
Burduk, R., Walkowiak, K.: Static classifier selection with interval weights of base classifiers. In: Nguyen, N.T., Trawiński, B., Kosala, R. (eds.) ACIIDS 2015, Part I. LNCS, vol. 9011, pp. 494–502. Springer, Cham (2015)
Fernández, A., López, V., José del Jesus, M., Herrera, F.: Revisiting evolutionary fuzzy systems: Taxonomy, applications, new trends and challenges. Knowl. Based Syst. 80, 109–121 (2015)
Lughofer, E.: Evolving Fuzzy Systems—Methodologies, Advanced Concepts and Applications. STUDFUZZ, vol. 266. Springer, Heidelberg (2011)
Hong, T.-P., Liou, Y.-L., Wang, S.-L., Vo, B.: Feature selection and replacement by clustering attributes. Vietnam J. Comput. Sci. 1, 47–55 (2014)
Pham, T.-N., Nguyen, V.-Q., Tran, V.-H., Nguyen, T.-T., Ha, Q.-T.: A semi-supervised multi-label classification framework with feature reduction and enrichment. J. Inf. Telecommun. 1(2), 141–154 (2017)
Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Exploration of bagging ensembles comprising genetic fuzzy models to assist with real estate appraisals. In: Yin, H., Corchado, E. (eds.) IDEAL 2009, LNCS, vol. 5788, pp. 554–561. Springer, Heidelberg (2009)
Krzystanek, M., Lasota, T., Telec, Z., Trawiński, B.: Analysis of bagging ensembles of fuzzy models for premises valuation. In: Nguyen, N.T., et al. (eds.) ACIIDS 2010, LNAI, vol. 5991, pp. 330–339. Springer, Heidelberg (2010)
Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Investigation of the eTS evolving fuzzy systems applied to real estate appraisal. J. Mult. Valued Logic Soft Comput. 17(2–3), 229–253 (2011)
Lughofer, E., Trawiński, B., Trawiński, K., Kempa, O., Lasota, T.: On employing fuzzy modeling algorithms for the valuation of residential premises. Inf. Sci. 181, 5123–5142 (2011)
Trawiński, B.: Evolutionary fuzzy system ensemble approach to model real estate market based on data stream exploration. J. Univers. Comput. Sci. 19(4), 539–562 (2013)
Telec, Z., Trawiński, B., Lasota, T., Trawiński, G.: Evaluation of neural network ensemble approach to predict from a data stream. In: Hwang, D., et al. (eds.) ICCCI 2014, LNAI, vol. 8733. Springer, Heidelberg (2014)
Lasota, T., Sawiłow, E., Trawiński, B., Roman, M., Marczuk, P., Popowicz, P.: A Method for merging similar zones to improve intelligent models for real estate appraisal. In: Nguyen, N.T., Trawiński, B., Kosala, R. (eds.) ACIIDS 2015. LNCS, vol. 9011, pp. 472–483. Springer, Cham (2015). doi:10.1007/978-3-319-15702-3_46
Lasota, T., Sawiłow, E., Telec, Z., Trawiński, B., Roman, M., Matczuk, P., Popowicz, P.: Enhancing intelligent property valuation models by merging similar cadastral regions of a municipality. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015. LNCS, vol. 9330, pp. 566–577. Springer, Cham (2015). doi:10.1007/978-3-319-24306-1_55
Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques, 4th edn. Morgan Kaufmann, Burlington (2016)
Krasnoborski, J.: Management of a cadastral map on a mobile platform (in Polish). Engineer’s thesis. Wroclaw University of Science and Technology, Wrocław (2015)
Piwowarczyk, M.: Web application to aid in real estate appraisal (in Polish). Engineer’s thesis. Wroclaw University of Science and Technology, Wrocław (2015)
Talaga, M.: Mobile application to aid in real estate appraisal (in Polish). Engineer’s thesis. Wroclaw University of Science and Technology, Wrocław (2015)
Trawiński, B., Telec, Z., Krasnoborski, J., Piwowarczyk, M., Talaga, M., Lasota, T., Sawiłow, E.: Comparison of expert algorithms with machine learning models for a real estate appraisal system. In: 2017 IEEE International Conference on Innovations in Intelligent Systems and Applications (INISTA 2017). IEEE (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Trawiński, B., Lasota, T., Kempa, O., Telec, Z., Kutrzyński, M. (2017). Comparison of Ensemble Learning Models with Expert Algorithms Designed for a Property Valuation System. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10448. Springer, Cham. https://doi.org/10.1007/978-3-319-67074-4_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-67074-4_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67073-7
Online ISBN: 978-3-319-67074-4
eBook Packages: Computer ScienceComputer Science (R0)