Abstract
Open stream data on public transport published by cities can be used by third party developers such as Google to create a real–time travel planner. However, even a real data based system examines a current situation on roads. We have used open stream data with current trams’ localisations and timetables to estimate current delays of individual trams. On that base, we calculate a global coefficient that can be used as a measure to monitor a current situation in a public transport network. We present an use case from the city of Warsaw that shows how a critical situation for a public transport network can be detected before the peak points of cumulative delays
Similar content being viewed by others
References
Álvarez, A., Casado, S., González Velarde, J.L., Pacheco, J.: A computational tool for optimizing the urban public transport: a real application. J. Comput. Syst. Sci. Int. 49(2), 244–252 (2010). http://dx.doi.org/10.1134/S1064230710020103
Boutsis, I., Kalogeraki, V., Guno, D.: Reliable crowdsourced event detection in smartcities. In: 2016 1st International Workshop on Science of Smart City Operations and Platforms Engineering (SCOPE) in partnership with Global City Teams Challenge (GCTC) (SCOPE - GCTC), pp. 1–6 (2016)
Cui, L., Zhang, X., Zhou, X., Salim, F.: Topical Event Detection on Twitter, pp. 257–268. Springer International Publishing, Cham (2016). http://dx.doi.org/10.1007/978-3-319-46922-5_20
Farkas, K., Feher, G., Benczur, A., Sidlo, C.: Crowdsending based public transport information service in smart cities. IEEE Commun. Mag. 53(8), 158–165 (2015)
García, C.R., Pérez, R., Lorenz, Á., Alayón, F., Padrón, G.: Supporting Information Services for Travellers of Public Transport by Road. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009. LNCS, vol. 5717, pp. 406–412. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04772-5_53
Panagiotou, N., Katakis, I., Gunopulos, D.: Detecting Events in Online Social Networks: Definitions, Trends and Challenges, pp. 42–84. Springer International Publishing, Cham (2016). http://dx.doi.org/10.1007/978-3-319-41706-6_2
Rodrigues, F., Borysov, S., Ribeiro, B., Pereira, F.: A Bayesian additive model for understanding public transport usage in special events. IEEE Trans. Pattern Anal. Mach. Intell. 99, 1–1 (2016)
Souto, G., Liebig, T.: On Event Detection from Spatial Time Series for Urban Traffic Applications, pp. 221–233. Springer International Publishing, Cham (2016). http://dx.doi.org/10.1007/978-3-319-41706-6_11
Tyrinopoulos, Y.: A complete conceptual model for the integrated management of the transportation work. J. Public Transp. 7(4), 101–121 (2004)
Zheng, P., Wang, W., Ge, H.: The influence of bus stop on traffic flow with velocity-difference-separation model. Int. J. Mod. Phys. C 27(11), 1650135 (2016). http://www.worldscientific.com/doi/abs/10.1142/S0129183116501357
Zychowski, A., Junosza-Szaniawski, K., Kosicki, A.: Travel time prediction for trams in warsaw. In: Kurzynski, M., Wozniak, M., Burduk, R. (eds.) CORES 2017. AISC, vol. 578, pp. 53–62. Springer, Cham (2018). doi:10.1007/978-3-319-59162-9_6
Acknowledgements
This research has been supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 688380 VaVeL: Variety, Veracity, VaLue: Handling the Multiplicity of Urban Sensors.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Luckner, M., Karwowski, J. (2017). Estimation of Delays for Individual Trams to Monitor Issues in Public Transport Infrastructure. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10448. Springer, Cham. https://doi.org/10.1007/978-3-319-67074-4_50
Download citation
DOI: https://doi.org/10.1007/978-3-319-67074-4_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67073-7
Online ISBN: 978-3-319-67074-4
eBook Packages: Computer ScienceComputer Science (R0)