Abstract
The problems of obstacle avoidance occur in many areas for autonomous vehicles. In automotive field, Advanced Driver Assistance Systems modules equipped with sensor fusion are used to resolve these problems. In the case of small mobile platforms, electronic sensors such as ultrasound, gyroscopes, magnetometers and encoders are commonly used. The data obtained from these sensors is measured and processed, which permits the development of automatic obstacle avoidance functions for mobile platforms. The information from these sensors is sufficient to detect obstacles, determine the distance to obstacles and prepare actions to avoid the obstacles. This paper presents the results of research on two obstacle avoidance algorithms that were prepared for small mobile platforms that take advantage of an ultrasonic sensor. The presented solutions are based on calculating the weights of the possible directions for obstacle avoidance and the geometric analysis of an obstacle.
Similar content being viewed by others
References
Bengler, K., Dietmayer, K., Farber, B., Maurer, M., Stiller, C., Winner, H.: Three decades of driver assistance systems: review and future perspectives. IEEE Intell. Transp. Syst. Mag. 6, 6–22 (2014)
Fildes, B., Keall, M., Thomas, P., Parkkari, K., Pennisi, L., Tingvall, C.: Evaluation of the benefits of vehicle safety technology: The MUNDS study. Accid. Anal. Prev. 55, 274–281 (2013)
Ziebinski, A., Cupek, R., Grzechca, D., Chruszczyk, L.: Review of advanced driver assistance systems (ADAS). In: 18th IEEE International Conference on Industrial Technology (2017)
Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical systems: a survey. IEEE Syst. J. 9, 350–365 (2015)
Wu, F.-J., Kao, Y.-F., Tseng, Y.-C.: From wireless sensor networks towards cyber physical systems. Pervasive Mob. Comput. 7, 397–413 (2011)
Wang, Y., Vuran, M.C., Goddard, S.: Cyber-physical systems in industrial process control. ACM SIGBED Rev. 5, 1–2 (2008)
Li, R., Liu, C., Luo, F.: A design for automotive CAN bus monitoring system (2008)
Jia, X., Hu, Z., Guan, H.: A new multi-sensor platform for adaptive driving assistance system (ADAS). In: 2011 9th World Congress on Intelligent Control and Automation, pp. 1224–1230 (2011)
Garcia, F., Martin, D., de la Escalera, A., Armingol, J.M.: Sensor fusion methodology for vehicle detection. IEEE Intell. Transp. Syst. Mag. 9, 123–133 (2017)
Sezer, V., Gokasan, M.: A novel obstacle avoidance algorithm: “follow the gap method”. Robot. Auton. Syst. 60, 1123–1134 (2012)
Bertozzi, M., Broggi, A.: GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection. IEEE Trans. Image Process. 7, 62–81 (1998)
Yang, C., Hongo, H., Tanimoto, S.: A new approach for in-vehicle camera obstacle detection by ground movement compensation (2008)
Budzan, S.: Fusion of visual and range images for object extraction. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) Computer Vision and Graphics. LNCS, pp. 108–115. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11331-9_14
Grzechca, D.E., Pelczar, P., Chruszczyk, L.: Analysis of object location accuracy for iBeacon technology based on the RSSI path loss model and fingerprint map. Int. J. Electron. Telecommun. 62, 371–378 (2016)
Strakowski, M.R., Kosmowski, B.B., Kowalik, R., Wierzba, P.: An ultrasonic obstacle detector based on phase beamforming principles. IEEE Sens. J. 6, 179–186 (2006)
Jaskuła, M., Łazoryszczak, M., Peryt, S.: Fast MEMS application prototyping using Arduino/LabView pair. Meas. Autom. Monit. 61, 548–550 (2015)
Mocha, J., Kania, D.: Hardware implementation of a control program in FPGA structures. Prz. Elektrotech. 88, 95–100 (2012)
Ziębiński, A., Świerc, S.: The VHDL implementation of reconfigurable MIPS processor. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions, vol. 59, pp. 663–669. Springer, Berlin (2009). doi:10.1007/978-3-642-00563-3_69
Cupek, R., Ziebinski, A., Fojcik, M.: An ontology model for communicating with an autonomous mobile platform. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) Beyond Databases, Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation, vol. 716, pp. 480–493. Springer, Berlin (2017). doi:10.1007/978-3-319-58274-0_38
Maka, A., Cupek, R., Rosner, J.: OPC UA object oriented model for public transportation system. Presented at the 2011 Fifth UKSim European Symposium on Computer Modeling and Simulation (EMS) (2011)
Czyba, R., Niezabitowski, M., Sikora, S.: Construction of laboratory stand and regulation in ABS car system. Presented at the 2013 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, May 2013
Ulacha, G., Stasinski, R.: Improving neural network approach to lossless image coding. Presented at the Picture Coding Symposium (PCS) (2012)
Acknowledgements
This work was supported by the European Union through the FP7-PEOPLE-2013-IAPP AutoUniMo project “Automotive Production Engineering Unified Perspective based on Data Mining Methods and Virtual Factory Model” (Grant Agreement No: 612207) and research work financed from funds for science for years: 2016–2017 allocated to an international co-financed project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Ziebinski, A., Cupek, R., Nalepa, M. (2017). Obstacle Avoidance by a Mobile Platform Using an Ultrasound Sensor. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10449. Springer, Cham. https://doi.org/10.1007/978-3-319-67077-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-67077-5_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67076-8
Online ISBN: 978-3-319-67077-5
eBook Packages: Computer ScienceComputer Science (R0)