Abstract
An environmental monitoring process consists of a regular collection and analysis of sensors data streams. It aims to infer new knowledge about the environment, enabling the explorer to supervise the network and to take right decisions. Different data mining techniques are then applied to the collected data in order to infer aggregated statistics useful for anomalies detection and forecasting. The obtained results are closely dependent on the collected data quality. In fact, the data are often dirty, they contain noisy, erroneous and missing values. Poor data quality leads to defective and faulty results. One solution to overcome this problem will be presented in this paper. It consists of evaluating and improving the data quality, to be able to obtain reliable results. In this paper, we first introduce the data quality concept. Then, we discuss the existing related research studies. Finally, we propose a complete sensors data quality management system.
Similar content being viewed by others
Notes
References
El Sibai, R., Chabchoub, Y., Demerjian, J., Kazi-Aoul, Z., Barbar, K.: A performance study of the chain sampling algorithm. In: Proceedings of the IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS), pp. 487–494. IEEE (2015)
El Sibai, R., Chabchoub, Y., Demerjian, J., Kazi-Aoul, Z., Barbar, K.: Sampling algorithms in data stream environments. In: Proceedings of the IEEE First International Conference on Digital Economy Emerging Technologies and Business Innovation (ICDEc), pp. 29–36. IEEE (2016)
Fan, W.: Data quality: from theory to practice. ACM SIGMOD Rec. 44(3), 7–18 (2015)
Strong, D.M., Lee, Y.W., Wang, R.Y.: Data quality in context. Commun. ACM 40, 103–110 (1997)
Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manag. Inf. Syst. 12, 5–33 (1996)
Jeffery, S.R., Alonso, G., Franklin, M.J., Hong, W., Widom, J.: Declarative support for sensor data cleaning. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) Pervasive 2006. LNCS, vol. 3968, pp. 83–100. Springer, Heidelberg (2006). doi:10.1007/11748625_6
Lim, H.S., Moon, Y.S., Bertino, E.: Research issues in data provenance for streaming environments. In: Proceedings of the 2nd SIGSPATIAL ACM GIS 2009 International Workshop on Security and Privacy in GIS and LBS, pp. 58–62 (2009)
Rodriguez, C.G.: Qualité des données capteurs pour les systèmes de surveillance de phénomènes environnementaux. Ph.D. thesis, Villeurbanne, INSA (2010)
Rodriguez, C.G., Servigne, S.: Sensor data quality for geospatial monitoring applications. In: AGILE, 15th Internationale Conference on Geographic Information Science, pp. 1–6 (2012)
Ramirez, G., Fuentes, O., Tweedie, C.E.: Assessing data quality in a sensor network for environmental monitoring. In: Fuzzy Information Processing Society (NAFIPS), pp. 1–6. IEEE (2011)
Klein, A., Do, H.H., Hackenbroich, G., Karnstedt, M., Lehner, W.: Representing data quality for streaming and static data. In: 23rd International Conference on Data Engineering Workshop, pp. 3–10. IEEE (2007)
Klein, A., Lehner, W.: Representing data quality in sensor data streaming environments. J. Data Inf. Qual. (JDIQ) 1, 10–28 (2009)
Olbrich, S.: Warehousing and analyzing streaming data quality information. In: AMCIS, p. 159 (2010)
Smith, S.: Digital Signal Processing: A Practical Guide for Engineers and Scientists. Newnes, Oxford (2013)
Sharma, A.B., Golubchik, L., Govindan, R.: Sensor faults: detection methods and prevalence in real-world datasets. ACM Trans. Sens. Netw. (TOSN) 6(3), 23 (2010)
Abuaitah, G.R., Wang, B.: A taxonomy of sensor network anomalies and their detection approaches. In: Technological Breakthroughs in Modern Wireless Sensor Applications, pp. 172–206. IGI Global (2015)
Pang, Q., Wong, V.W.S.: Reliable data transport and congestion control in wireless sensor networks. Int. J. Sens. Netw. 3(1), 16–24 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
El Sibai, R., Chabchoub, Y., Chiky, R., Demerjian, J., Barbar, K. (2017). Assessing and Improving Sensors Data Quality in Streaming Context. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10449. Springer, Cham. https://doi.org/10.1007/978-3-319-67077-5_57
Download citation
DOI: https://doi.org/10.1007/978-3-319-67077-5_57
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67076-8
Online ISBN: 978-3-319-67077-5
eBook Packages: Computer ScienceComputer Science (R0)