Skip to main content

A Unified Formalism for Monoprocessor Schedulability Analysis Under Uncertainty

  • Conference paper
  • First Online:
Critical Systems: Formal Methods and Automated Verification (AVoCS 2017, FMICS 2017)

Abstract

The schedulability analysis of real-time systems (even on a single processor) is a very difficult task, which becomes even more complex (or undecidable) when periods or deadlines become uncertain. In this work, we propose a unified formalism to model monoprocessor schedulability problems with several types of tasks (periodic, sporadic, or more complex), most types of schedulers (including \(\mathsf {EDF}\), \(\mathsf {FPS}\) and \(\mathsf {SJF}\)), with or without preemption, in the presence of uncertain timing constants. Although the general case is undecidable, we exhibit a large decidable subclass. We demonstrate the expressive power of our formalism on several examples, allowing also for robust schedulability.

This work is partially supported by the ANR national research program PACS (ANR-14-CE28-0002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As this definition is a contribution of this paper, it would better fit outside of the preliminaries section; however, it is convenient to define it first so as to then define task automata, and (parametric) timed automata in a straightforward manner.

  2. 2.

    In the literature, TAs are often defined using integer constants in guards and invariants; it is well-known that using rationals preserves decidability results, as rationals can be translated to integers using an appropriate constants rescaling.

  3. 3.

    Sources, binaries, models and results are available at imitator.fr/static/FMICS17.

References

  1. Abdeddaïm, Y., Maler, O.: Preemptive job-shop scheduling using stopwatch automata. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 113–126. Springer, Heidelberg (2002). doi:10.1007/3-540-46002-0_9

    Chapter  Google Scholar 

  2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC, pp. 592–601. ACM (1993)

    Google Scholar 

  4. André, É.: What’s decidable about parametric timed automata? In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 52–68. Springer, Cham (2016). doi:10.1007/978-3-319-29510-7_3

    Chapter  Google Scholar 

  5. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32759-9_6

    Chapter  Google Scholar 

  6. André, É., Lipari, G., Sun, Y.: Verification of two real-time systems using parametric timed automata. In: WATERS (2015)

    Google Scholar 

  7. Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)

    Article  MathSciNet  Google Scholar 

  8. Bérard, B., Haddad, S., Jovanović, A., Lime, D.: Parametric interrupt timed automata. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 59–69. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41036-9_7

    Chapter  Google Scholar 

  9. Bouyer, P., Markey, N., Sankur, O.: Robustness in timed automata. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 1–18. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41036-9_1

    Chapter  Google Scholar 

  10. Cassez, F., Larsen, K.: The impressive power of stopwatches. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000). doi:10.1007/3-540-44618-4_12

    Chapter  Google Scholar 

  11. Cimatti, A., Palopoli, L., Ramadian, Y.: Symbolic computation of schedulability regions using parametric timed automata. In: RTSS, pp. 80–89. IEEE Computer Society (2008)

    Google Scholar 

  12. Fang, B., Li, G., Sun, D., Cai, H.: Schedulability analysis of timed regular tasks by under-approximation on WCET. In: Fränzle, M., Kapur, D., Zhan, N. (eds.) SETTA 2016. LNCS, vol. 9984, pp. 147–162. Springer, Cham (2016). doi:10.1007/978-3-319-47677-3_10

    Chapter  Google Scholar 

  13. Fersman, E., Krcál, P., Pettersson, P., Yi, W.: Task automata: schedulability, decidability and undecidability. Inf. Comput. 205(8), 1149–1172 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model checking of timed automata. J. Logic Algebr. Program. 52–53, 183–220 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed automata. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015)

    Article  MATH  Google Scholar 

  16. Miller, J.S.: Decidability and complexity results for timed automata and semi-linear hybrid automata. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 296–310. Springer, Heidelberg (2000). doi:10.1007/3-540-46430-1_26

    Chapter  Google Scholar 

  17. Norström, C., Wall, A., Yi, W.: Timed automata as task models for event-driven systems. In: RTCSA, pp. 182–189. IEEE Computer Society (1999)

    Google Scholar 

  18. Sun, Y., Soulat, R., Lipari, G., André, É., Fribourg, L.: Parametric schedulability analysis of fixed priority real-time distributed systems. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2013. CCIS, vol. 419, pp. 212–228. Springer, Cham (2014). doi:10.1007/978-3-319-05416-2_14

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Étienne André .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

André, É. (2017). A Unified Formalism for Monoprocessor Schedulability Analysis Under Uncertainty. In: Petrucci, L., Seceleanu, C., Cavalcanti, A. (eds) Critical Systems: Formal Methods and Automated Verification. AVoCS FMICS 2017 2017. Lecture Notes in Computer Science(), vol 10471. Springer, Cham. https://doi.org/10.1007/978-3-319-67113-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67113-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67112-3

  • Online ISBN: 978-3-319-67113-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics