Skip to main content

PID Implemented by a Type-1 Fuzzy Logic System with Back-Propagation Algorithm for Online Tuning of Its Gains

  • Conference paper
  • First Online:
Fuzzy Logic in Intelligent System Design (NAFIPS 2017)

Abstract

Two different types of benchmarking proportional-integral-derivative PID controllers are used to compare the proposed methodology. In the first controller the proportional gain KP, the integral gain KI, and the derivative gain KD, are offline calculated based on the dynamics of the process under control using the Ziegler Nichols method. The second controller uses three type-1 fuzzy logic systems to estimate each one of the gains every control cycle. This paper proposes a fuzzy self-tuning PID controller: it has three singleton type-1 fuzzy logic systems to calculate each gain of the controller every control cycle, with the novel characteristics that each fuzzy rule base is updated and tuned each feedback cycle using the back-propagation (BP) algorithm. This proposal is named T1 SFLS PID-BP. The results show that the proposed controller presents better performance than the two benchmarking controllers: the PID and the T1 SFLS PID.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shi, Z., Wang, T., Liu, W., Ma, C., Yuan, X.: A fuzzy PID-controlled SMA actuator for a two-DOF joint. Chinese J. Aeronaut. 27(2), 453–560 (2014)

    Article  Google Scholar 

  2. Xu, J., Feng, Z.: A novel self-adaptive fuzzy-PID controller for temperature control in variable refrigerant volume (VRV) air conditioning systems. In: Proceedings of the Intelligent System Knowledge Engineering, pp. 1–5 (2007)

    Google Scholar 

  3. Arulmozhiyal, R.: Design and implementation of fuzzy PID controller for brushless DC motor using FPGA. In: IEEE International Conference on Power Electronics, Drives and Energy Systems (2012)

    Google Scholar 

  4. Azulmozhiyal, R., Kandiban, R.: Design of fuzzy PID controller for brushless DC motor. In: 2012 International Conference on Computer Communication and Informatics, pp. 1–7 (2012)

    Google Scholar 

  5. Araujo, H., Xiao, B., Liu, C., Zhao, Y., Lam, H.K.: Design of type-1 and interval type-2 fuzzy PID control for anesthesia using genetic algorithms, 70–93 (2014)

    Google Scholar 

  6. Kothapalli, G., Hassan, M.Y.: Fuzzy controlled hydraulic excavator with model parameter uncertainty. World Acad. Sci. Eng. Technol. 60, 1889–1894 (2011)

    Google Scholar 

  7. Chen, Y., Wang, T.: Interval type-2 fuzzy PID control and simulation. In: 2nd International Conference on Electronic & Mechanical Engineering and Information Technology, pp. 326–330 (2012)

    Google Scholar 

  8. Mendez, G.M., Hernandez, M.A.: Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP. Analysis and Design of Intelligent Systems using Soft Computing Techniques, vol. 41, pp. 36–44 (2007)

    Google Scholar 

  9. Mendez, G.M., Castillo, O., Colás, R., Moreno, H.: Finishing mill strip gage setup and control by interval type-1 non-singleton type-2 fuzzy logic systems. Appl. Soft Comput. 24, 900–911 (2014)

    Article  Google Scholar 

  10. Jie, S., Dian-hua, Z., Xu, L., Jin, Z.: Smith prediction monitor AGC system based on fuzzy self-tuning PID control. J. Iron Steel Res. 17(2), 22–26 (2010)

    Article  Google Scholar 

  11. Ramos, J.M.J., Reyes, E., Sanchez, J.L., Mendez, G.M.: A professional PID implemented using a non-singleton type-1 fuzzy logic system to control a stepper motor. Int. J. Eng. Sci. 2(2), 94–101 (2016)

    Google Scholar 

  12. Castillo, O., Cervantes, L.: Genetic design of optimal type-1 and type-2 fuzzy systems for longitudinal control of an airplane. Intell. Autom. Soft Comput. 20(2), 213–227 (2014)

    Article  Google Scholar 

  13. Aguado, A.: Temas de Identificación y Control Adaptable. Instituto de Cibernética, Matemáticas y Física, La Habana (2000)

    Google Scholar 

  14. Wang, L.-X.: A Course in Fuzzy Systems and Control. Pretince Hall, Upper Saddle River

    Google Scholar 

  15. Shi, D., Gao, G., Xiao, P.: Application of expert fuzzy PID method for temperature control of heating furnace. Procedia Eng. 29, 257–261 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo M. Méndez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Álvarez, A., Reyes, D., Rincón, E.J., Valderrama, J., Noradino, P., Méndez, G.M. (2018). PID Implemented by a Type-1 Fuzzy Logic System with Back-Propagation Algorithm for Online Tuning of Its Gains. In: Melin, P., Castillo, O., Kacprzyk, J., Reformat, M., Melek, W. (eds) Fuzzy Logic in Intelligent System Design. NAFIPS 2017. Advances in Intelligent Systems and Computing, vol 648. Springer, Cham. https://doi.org/10.1007/978-3-319-67137-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67137-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67136-9

  • Online ISBN: 978-3-319-67137-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics