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Abstract

Many existing brain network distances are based on matrix norms. The element-wise differences 

may fail to capture underlying topological differences. Further, matrix norms are sensitive to 

outliers. A few extreme edge weights may severely affect the distance. Thus it is necessary to 

develop network distances that recognize topology. In this paper, we introduce Gromov-Hausdorff 

(GH) and Kolmogorov-Smirnov (KS) distances. GH-distance is often used in persistent homology 

based brain network models. The superior performance of KS-distance is contrasted against matrix 

norms and GH-distance in random network simulations with the ground truths. The KS-distance is 

then applied in characterizing the multimodal MRI and DTI study of maltreated children.

1 Introduction

There are many similarity measures and distances between networks in literature [2,7,14]. 

Many of these approaches simply ignore the topology of the networks and mainly use the 

sum of differences between either node or edge measurements. These network distances are 

sensitive to the topology of networks. They may lose sensitivity over topological structures 

such as the connected components, modules and holes in networks.

In standard graph theoretic approaches, the similarity and distance of networks are measured 

by determining the difference in graph theory features such as assortativity betweenness 

centrality, small-worldness and network homogeneity [4,17]. Comparison of graph theory 

features appears to reveal changes of structural or functional connectivity associated with 

different clinical populations [17]. Since weighted brain networks are difficult to interpret 

and visualize, they are often turned into binary networks by thresholding edge weights 

[11,20]. However, the choice of thresholding the edge weights may alter the network 

topology. To obtain the proper optimal threshold, the multiple comparison correction over 

every possible edge has been proposed [16,18,20]. However, depending on what p-value to 

threshold, the resulting binary graph also changes. Others tried to control the sparsity of 

edges in the network in obtaining the binary network [11,20]. However, one encounters the 

problem of thresholding sparse parameters. Thus existing methods for binarizing weighted 

networks cannot escape the inherent problem of arbitrary thresholding.
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Until now, there is no widely accepted criteria for thresholding networks. Instead of trying to 

come up with an optimal threshold for network construction that may not work for different 

clinical populations or cognitive conditions [20], why not use all networks for every possible 
threshold? Motivated by this question, new multiscale hierarchical network modeling 

framework based on persistent homology has been developed recently [7,14]. In persistent 

homology based brain network analysis as first formulated in [14], we build the collection of 

nested networks over every possible threshold using the graph filtration, a persistent 

homological construct [14]. The graph filtration is a threshold-free framework for analyzing 

a family of graphs but requires hierarchically building specific nested subgraph structures. 

The graph filtration shares similarities to the existing multi-thresholding or multi-resolution 

network models that use many different arbitrary thresholds or scales [11,14]. Such 

approaches are mainly used to visually display the dynamic pattern of how graph theoretic 

features change over different thresholds and the pattern of change is rarely quantified. 

Persistent homology can be used to quantify such dynamic pattern in a more coherent 

mathematical framework.

In persistent homology, there are various metrics that have been proposed to measure 

network distance. Among them, Gromov-Hausdorff (GH) distance is possibly the most 

popular distance that is originally used to measure distance between two metric spaces [19]. 

It was later adapted to measure distances in persistent homology, dendrograms [5] and brain 

networks [14]. The probability distributions of GH-distance is unknown. Thus, the statistical 

inference on GH-distance has been done through resampling techniques such as jack-knife, 

bootstraps or permutations [7,14,15], which often cause computational bottlenecks for large-

scale networks. To bypass the computational bottleneck associated with resampling large-

scale networks, the Kolmogorov-Smirnov (KS) distance was introduced in [6,8,15]. The 

advantage of using KS-distance is its easiness to interpret compared to other less intuitive 

distances from persistent homology. Due to its simplicity, it is possible to determine its 

probability distribution exactly [8].

Many distance or similarity measures are not metrics but having metric distances makes the 

interpretation of brain networks easier due to the triangle inequality. Further, existing 

network distance concepts are often borrowed from the metric space theory. Let us start with 

formulating networks as metric spaces.

2 Matrix Norms

Consider a weighted graph or network with the node set V = {1, …, p} and the edge weights 

w = (wij), where wij is the weight between nodes i and j. We may assume that the edge 

weights satisfy the metric properties: nonnegativity identity, symmetry and the triangle 

inequality such that

wi, j ≥ 0, wii = 0, wi j = w ji, wi j ≤ wik + wk j .
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With theses conditions, χ = (V, w) forms a metric space. Although the metric property is not 

necessary for building a network, it offers many nice mathematical properties and easier 

interpretation on network connectivity.

Example 1

Given measurement vector xi = (x1i, …, xni)T ∈ ℝn on the node i. The weight w = (wij) 

between nodes is often given by some bivariate function f: wij = f(xi, xj). The correlation 

between xi and xj, denoted as corr(xi, xj), is a bivariate function. If the weights w = (wij) are 

given by wi j = 1 − corr(xi, x j),, it can be shown that χ = (V, w) forms a metric space.

Matrix norm of the difference between networks is often used as a measure of similarity 

between networks [2,21]. Given two networks χ1 = (V, w1) and χ2 = (V, w2), the Ll-norm 

of network difference is given by

Dl(χ1, χ2) = w1 − w2
l = ∑

i, j
|wi j

1 − wi j
2 |l

1/l
.

Note Ll is the element-wise Euclidean distance in l-dimension. When l = ∞, L∞-distance is 

written as

D∞(χ1, χ2) = w1 − w2
∞ = max

∀i, j
|wi j

1 − wi j
2 | .

The element-wise differences may not capture additional higher order similarity. For 

instance, there might be relations between a pair of columns or rows [21]. Also L1 and L2-

distances usually surfer the problem of outliers. Few outlying extreme edge weights may 

severely affect the distance. Further, these distances ignore the underlying topological 

structures. Thus, there is a need to define distances that are more topological.

3 Gromov-Hausdorff Distance

GH-distance for brain networks is first introduced in [14]. GH-distance measures the 

difference between networks by embedding the network into the ultrametric space that 

represents hierarchical clustering structure of network [5]. The distance sij between the 

closest nodes in the two disjoint connected components R1 and R2 is called the single 

linkage distance (SLD), which is defined as

si j = min
l ∈ R1, k ∈ R2

wlk .

Every edge connecting a node in R1 to a node in R2 has the same SLD. SLD is then used to 

construct the single linkage matrix (SLM) S = (sij) (Fig. 1). SLM shows how connected 

components are merged locally and can be used in constructing a dendrogram. SLM is a 
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ultrametric which is a metric space satisfying the stronger triangle inequality sij ≤ max(sik, 
skj) [5]. Thus the dendrogram can be represented as a ultrametric space  = (V, S), which is 

again a metric space. GH-distance between networks is then defined through GH-distance 

between corresponding dendrograms. Given two dendrograms 1 = (V, S1) and 2 = (V, S2) 

with SLM S1 = (si j
1 ) and S2 = (si j

2 ),

DGH(D1, D2) = 1
2 max

∀i, j
|si j

1 − si j
2 | . (1)

For the statistical inference on GH-distance, resampling techniques such as jack-knife or 

permutation tests are often used [14,15].

4 Kolmogorov-Smirnov Distance

Recently a new network distance based on the concept of graph filtration has been proposed 

in [8]. Given weighted network χ = (V, w), the binary network ℬ∊(χ) = (V, ℬ∊(w)) is a graph 

consisting of the node set V and the edge weight ℬ∊(w) = (ℬ∊(wij)) given by

ℬ∈(wi j) =
1 ifwi j ≤ ∈ ;
0 otherwise.

(2)

Note ℬ∊(w) is the adjacency matrix of ℬ∊(χ). Then it can be shown that

ℬ∈0
(χ) ⊂ ℬ∈1

(χ) ⊂ ℬ∈2
(χ) ⊂ ⋯

for 0 = ∊0 ≤ ∊1 ≤ ∊2 …. The sequence of such nested multiscale graph structure is called the 

graph filtration [7,14]. The sequence of thresholded values ∊0, ∊1, ∊2 … are called the 

filtration values.

The graph filtration can be quantified using monotonic function f satisfying

f ∘ ℬ∈ j
(χ) ≥ f ∘ ℬ∈ j + 1

(χ)

for ∊j ≤ ∊j+1. The number of connected components, the zeroth Betti number β0, satisfies the 

monotonicity property (3). The size of the largest cluster, denoted as γ, satisfies a similar but 

opposite relation of monotonic increase [7].

Given two networks χ1 = (V, w1) and χ2 = (V, w2), Kolmogorov-Smirnov (KS) distance 

between X1 and X2 is defined as [7,15]
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DKS(χ1, χ2) = sup
∈ ≥ 0

| f ∘ ℬ∈(χ)1 − f ∘ ℬ∈(χ2) | .

The distance DKS is motivated by Kolmogorov-Smirnov (KS) test for determining the 

equivalence of two cumulative distribution functions [8,10].

Example 2

Consider network with edge weights rij = 1 – corr(xi, xj). Such network is not a metric space. 

To make it a metric space, we need to scale the edge weight to wi j = ri j (Example 1). 

However, KS-distance is invariant under such monotonic scaling since the distance is taken 

over every possible filtration value.

The distance DKS can be discretely approximated using the finite number of filtrations:

Dq = sup
1 ≤ j ≤ q

| f ∘ ℬ∈ j
(χ1) − f ∘ ℬ∈ j

(χ2) | .

If we choose enough number of q such that ∊j are all the sorted edge weights, then DKS(χ1, 

χ2) = Dq [8]. This is possible since there are only up to p(p – 1)/2 number of unique edges in 

a graph with p nodes and f ○ ℬ∊ increases discretely. In practice, ∊j may be chosen 

uniformly.

The probability distribution of Dq under the null is asymptotically given by

lim
q ∞ Dq/ 2q ≥ d = 2 ∑

i = 1

∞
( − 1)i − 1e−2i2d2

. (3)

The result is first given in [8]. p-value under the null is then computed as

p − value = 2e
−do

2
− 2e

−8do
2

+ 2e
−18do

2
⋯,

where the observed value do is the least integer greater than Dq/ 2q in the data. For any large 

value d0 > 2, the second term is in the order of 10−14 and insignificant. Even for small 

observed d0, the expansion converges quickly and 5 terms are sufficient. KS-distance 

method does not assume any statistical distribution on graph features other than that they has 

to be monotonic. The technique is very general and applicable to other monotonic graph 

features such as node degrees.
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5 Comparisons

Five different network distances (L1, L2, L∞, GH and KS) were compared in simulation 

studies with modular structures. The simulations below were independently performed 100 

times and the average results were reported.

There were four groups and the sample size was n = 5 in each group and the number of 

nodes was p = 100 (Fig. 2). We follow notations in Example 1. In Group I, the measurement 

vector xi at node i was simulated as multivariate normal, i.e., xi ∼ N(0, In) with n by n 
identity matrix In as the covariance matrix. The edge weights for group I was 

wi j
1 = 1 − corr(xi, x j). In Group II, the measurement vector yi at node i was simulated as yi = 

xi + N(0, σ2In) with noise level σ = 0.01. The edge weight for group II was 

wi j
2 = 1 − corr(yi, y j).

Group III was generated by adding additional dependency to Group I:

yi = 0.5xci + 1 + N(0, σIn) .

This introduce modules in the network. We assumed there were total k = 4, 5, 10 modules 

and each module consists of c = p/k number of points. Group IV was generated by adding 

noise to Group III: zi = yi + N(0, σ2In).

No network difference

It was expected there was no network difference between Groups I and II. We applied the 5 

different distances. For the first four distances, permutation test was used. Since there were 5 

samples in each group, the total number of permutations was 
10
5 = 272 making the 

permutation test exact and the comparisons fair. All the distances performed well and did not 

detect network differences (1st row in Table 1). It was also expected there is no network 

difference between Groups III and IV. We compared 4 module network to 4 module 

network. All the distances performed equally well and did not detect differences (2nd row in 

Table 1).

Network difference

Networks with 4, 5 and 10 modules were generated using Group III models. Since the 

number of modules were different, they were considered as different networks. We 

compared 4 and 5 module networks (3rd row in Table 1), and 5 and 10 module networks 

(4th row in Table 1). L1, L2, L∞ distances did not performed well for 5 vs. 10 module 

comparisons. Surprisingly, GH-distance performed worse than L∞ in all cases. On the other 

hand, KS-distance performed extremely well.

The results of the above simulations did not change much even if we increased the noise 

level to σ = 0.1. In terms of computation, distance methods based on the permutation test 

took about 950 s (16 min) while the KS-like test procedure only took about 20 s in a 
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computer. The MATLAB code for performing these simulations is given in http://

www.cs.wisc.edu/∼mchung/twins. The results given in Table 1 may slightly change if 

different random networks are generated.

6 Application

The methods were applied to multimodal MRI and DTI of 31 normal controls and 23 age-

matched children who experienced maltreatment while living in post-institutional settings 

before being adopted by families in US. The detailed deception of the subject and image 

acquisition parameters are given in [7]. Ages range from 9 to 14 years. The average amount 

of time spend in institutional care was 2.5 ± 1.4 years. Children were on average 3.2 years 

when they were adapted.

For MRI, a study specific template was constructed using the diffeomorphic shape and 

intensity averaging technique through Advanced Normalization Tools (ANTS) [1]. White 

matter was also segmented into tissue probability maps using template-based priors, and 

registered to the template [3]. The Jacobian determinants of the inverse deformations from 

the template to individual subjects were obtained. DTI were corrected for eddy current 

related distortion and head motion via FSL (http://www.fmrib.ox.ac.uk/fsl) and distortions 

from field inhomogeneities were corrected [12] before performing a non-linear tensor 

estimation using CAMINO [9]. Subsequently, iterative tensor image registration strategy 

was used for spatial normalization [13]. Then fractional anisotropy (FA) were calculated for 

diffusion tensor volumes diffeomorphically registered to the study specific template. 

Jacobian determinants and FA-values are uniformly sampled at 1856 nodes along the white 

mater template boundary.

Correlation within modality

The correlations of the Jacobian determinant and FA-values were computed between nodes 

within each modality. This results in 1856 × 1856 correlation matrix for each group and 

modality. Using KS-distance, we determined the statistical significance of the correlation 

matrix differences between the groups for each modality separately. The statistical results in 

terms of p-values are all below 0.0001 indicating the very strong overall structural network 

differences in both MRI and DTI.

Cross-correlation across modality

Following the hyper-network framework in [8], we also computed the cross-correlation 

between the Jacobian determinants and FA-values on 1856 nodes. This results in 1856 × 

1856 cross-correlation matrix for each group. The statistical significance of the cross-

correlation matrix differences is then determined using KS-distance (p-value < 0.0001). The 

KS-distance method is robust under the change of node size and we also obtained the similar 

result when the node size changed to 548.
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7 Discussion

The limitation of GH- and KS-distances

The limitation of the SLM is the inability to discriminate a cycle in a graph. Consider two 

topologically different graphs with three nodes (Fig. 4). However, the corresponding SLM 

are identically given by

0 0.2 0.5
0.2 0 0.5
0.5 0.5 0

and
0 0.2 0.5

0.2 0 0.5
0.5 0.5 0

.

The lack of uniqueness of SLMs makes GH-distance incapable of discriminating networks 

with cycles [6]. KS-distance also treat the two networks in Fig. 4 as identical if Betti number 

β0 is used as the monotonic feature function. Thus, KS-distance also fail to discriminate 

cycles.

Computation

The total number of permutations in permuting two groups of size q each is [8] 
2q
q

4q

2πq . 

Even for small q = 10, more than tens of thousands permutations are needed for the accurate 

estimation the p-value. On the other hand, only up to 10 terms are needed in the KS-distance 

method. The KS-distance method avoids the computational burden of permutation tests.
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Fig. 1. 
(a) Toy network, (b) its dendrogram, (c) the distance matrix w based on Euclidean distance, 

(d) the single linkage matrix (SLM) S.
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Fig. 2. 
Randomly simulated correlation matrices. Group I and Group II were generated 

independently and identically. Group III was generated from Group I but additional 

dependency was added to introduce modular structures. Group IV was generated from 

Group III (10 modules) by adding small noise.
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Fig. 3. 
The plots of β0 (left) and γ (right) over 1 − corr . showing structural network differences 

between maltreated children (dotted red) and normal controls (solid black) on 1856 nodes. 

(Color figure online)
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Fig. 4. 
Two topologically distinct graphs may have identical dendrograms, which results in zero 

GH-distance.
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