Skip to main content

FCNet: A Convolutional Neural Network for Calculating Functional Connectivity from Functional MRI

  • Conference paper
  • First Online:
Connectomics in NeuroImaging (CNI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10511))

Included in the following conference series:

Abstract

Investigation of functional brain connectivity patterns using functional MRI has received significant interest in the neuroimaging domain. Brain functional connectivity alterations have widely been exploited for diagnosis and prediction of various brain disorders. Over the last several years, the research community has made tremendous advancements in constructing brain functional connectivity from time-series functional MRI signals using computational methods. However, even modern machine learning techniques rely on conventional correlation and distance measures as a basic step towards the calculation of the functional connectivity. Such measures might not be able to capture the latent characteristics of raw time-series signals. To overcome this shortcoming, we propose a novel convolutional neural network based model, FCNet, that extracts functional connectivity directly from raw fMRI time-series signals. The FCNet consists of a convolutional neural network that extracts features from time-series signals and a fully connected network that computes the similarity between the extracted features in a Siamese architecture. The functional connectivity computed using FCNet is combined with phenotypic information and used to classify individuals as healthy controls or neurological disorder subjects. Experimental results on the publicly available ADHD-200 dataset demonstrate that this innovative framework can improve classification accuracy, which indicates that the features learnt from FCNet have superior discriminative power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.preprocessed-connectomes-project.org/adhd200/.

References

  1. Riaz, A., Alonso, E., Slabaugh, G.: Phenotypic integrated framework for classification of ADHD using fMRI. In: Campilho, A., Karray, F. (eds.) ICIAR 2016. LNCS, vol. 9730, pp. 217–225. Springer, Cham (2016). doi:10.1007/978-3-319-41501-7_25

    Chapter  Google Scholar 

  2. Dey, S., Rao, A.R., Shah, M.: Attributed graph distance measure for automatic detection of attention deficit hyperactive disordered subjects. Front. Neural Circuits 8 (2014)

    Google Scholar 

  3. Kim, J., Calhoun, V.D., Shim, E., Lee, J.H.: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. NeuroImage 124, 127–146 (2016)

    Article  Google Scholar 

  4. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “Siamese” time delay neural network. In: Advances in Neural Information Processing Systems, pp. 737–744 (1994)

    Google Scholar 

  5. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. ADHD-200. http://fcon_1000.projects.nitrc.org/indi/adhd200/

    Google Scholar 

  7. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1), 273–289 (2002)

    Article  Google Scholar 

  8. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: International Conference on Machine Learning, vol. 30 (2013)

    Google Scholar 

  9. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nuñez-Garcia, M., Simpraga, S., Jurado, M.A., Garolera, M., Pueyo, R., Igual, L.: FADR: functional-anatomical discriminative regions for rest fMRI characterization. In: Zhou, L., Wang, L., Wang, Q., Shi, Y. (eds.) MLMI 2015. LNCS, vol. 9352, pp. 61–68. Springer, Cham (2015). doi:10.1007/978-3-319-24888-2_8

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atif Riaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Riaz, A. et al. (2017). FCNet: A Convolutional Neural Network for Calculating Functional Connectivity from Functional MRI. In: Wu, G., Laurienti, P., Bonilha, L., Munsell, B. (eds) Connectomics in NeuroImaging. CNI 2017. Lecture Notes in Computer Science(), vol 10511. Springer, Cham. https://doi.org/10.1007/978-3-319-67159-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67159-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67158-1

  • Online ISBN: 978-3-319-67159-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics