Abstract
Increasing volumes of data consumed and managed by enterprises demand effective and efficient data integration approaches. Additionally, the amount and variety of data sources impose further challenges for query engines. However, the majority of existing query engines rely on binary join-based query planners and execution methods with complexity that depends on the number of involved data sources. Moreover, traditional binary join operators are not able to distinguish between similar and different tuples, treating every incoming tuple as an independent object. Thus, if tuples are represented differently but refer to the same real-world entity, they are still considered as non-related objects. We propose MSimJoin, an approach towards a multi-way similarity join operator. MSimJoin accepts more than two inputs and is able to identify duplicates that correspond to similar entities from incoming tuples using Semantic Web technologies. Therefore, MSimJoin allows for the reduction of both the height of tree query plans and duplicated results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acosta, M., Vidal, M.-E.: Networks of linked data eddies: an adaptive web query processing engine for RDF data. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 111–127. Springer, Cham (2015). doi:10.1007/978-3-319-25007-6_7
Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an adaptive query processing engine for sparql endpoints. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25073-6_2
Buil-Aranda, C., Arenas, M., Corcho, O., Polleres, A.: Federating queries in SPARQL1.1: syntax, semantics and evaluation. Web Semant. Sci. Serv. Agents World Wide Web 18, 1–17 (2013)
Feng, J., Wang, J., Li, G.: Trie-join: a trie-based method for efficient string similarity joins. VLDB J. 21(4), 437–461 (2012)
Fernández, J.D., Llaves, A., Corcho, O.: Efficient RDF interchange (ERI) format for RDF data streams. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8797, pp. 244–259. Springer, Cham (2014). doi:10.1007/978-3-319-11915-1_16
Li, G., Deng, D., Wang, J., Feng, J.: Pass-join: a partition-based method for similarity joins. PVLDB 5(3), 253–264 (2011)
Mann, W., Augsten, N., Bouros, P.: An empirical evaluation of set similarity join techniques. PVLDB 9(9), 636–647 (2016)
Morales, C., Collarana, D., Vidal, M.-E., Auer, S.: MateTee: a semantic similarity metric based on translation embeddings for knowledge graphs. In: Cabot, J., Virgilio, R., Torlone, R. (eds.) ICWE 2017. LNCS, vol. 10360, pp. 246–263. Springer, Cham (2017). doi:10.1007/978-3-319-60131-1_14
Ribeiro, L.A., Cuzzocrea, A., Bezerra, K.A.A., Nascimento, B.H.B.: Incorporating clustering into set similarity join algorithms: the SjClust framework. In: Hartmann, S., Ma, H. (eds.) DEXA 2016. LNCS, vol. 9827, pp. 185–204. Springer, Cham (2016). doi:10.1007/978-3-319-44403-1_12
Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 245–260. Springer, Cham (2014). doi:10.1007/978-3-319-11964-9_16
Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization techniques for federated query processing on linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25073-6_38
Shang, Z., Liu, Y., Li, G., Feng, J.: K-join: knowledge-aware similarity join. IEEE Trans. Knowl. Data Eng. 28(12), 3293–3308 (2016)
Traverso, I., Vidal, M.-E., Kämpgen, B., Sure-Vetter, Y.: Gades: a graph-based semantic similarity measure. In: SEMANTiCS, pp. 101–104. ACM (2016)
Verborgh, R., Sande, M.V., Hartig, O., Herwegen, J.V., Vocht, L.D., Meester, B.D., Haesendonck, G., Colpaert, P.: Triple pattern fragments: a low-cost knowledge graph interface for the web. J. Web Sem. 37–38, 184–206 (2016)
Vidal, M.-E., Castillo, S., Acosta, M., Montoya, G., Palma, G.: On the selection of SPARQL endpoints to efficiently execute federated SPARQL queries. In: Hameurlain, A., Küng, J., Wagner, R. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXV. LNCS, vol. 9620, pp. 109–149. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49534-6_4
Wandelt, S., Deng, D., Gerdjikov, S., Mishra, S., Mitankin, P., Patil, M., Siragusa, E., Tiskin, A., Wang, W., Wang, J., Leser, U.: State-of-the-art in string similarity search and join. SIGMOD Rec. 43(1), 64–76 (2014)
Wang, Y., Wang, H., Li, J., Gao, H.: Efficient graph similarity join for information integration on graphs. Front. Comput. Sci. 10(2), 317–329 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Galkin, M., Vidal, ME., Auer, S. (2017). Towards a Multi-way Similarity Join Operator. In: Kirikova, M., et al. New Trends in Databases and Information Systems. ADBIS 2017. Communications in Computer and Information Science, vol 767. Springer, Cham. https://doi.org/10.1007/978-3-319-67162-8_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-67162-8_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67161-1
Online ISBN: 978-3-319-67162-8
eBook Packages: Computer ScienceComputer Science (R0)