Abstract
The Heat Pump with geothermal exchanger is one of the best methods to heat up a building. The heat exchanger is one of the most representative elements when a heat pump is employed as building heating system. In the present study, a novel intelligent system was designed to predict the performance of on this kind of heating equipment. The novel approach has been successfully empirically tested under a real dataset obtained during measurements along one year. It was based on time series modeling. Then, the model was validated and verified; it obtains good results in all the operating conditions ranges.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Porter, D.: Comprehensive Renewable Energy. Elsevier, Oxford (2012)
Kaltschmitt, M., Streicher, W., Wiese, A.: Renewable Energy. Springer, Heidelberg (2007)
Jenssen, T.: Glances at Renewable and Sustainable Energy. Springer, London (2013)
Langley, B.C.: Heat Pump Technology. Prentice Hall PTR, Englewood Cliffs (2002)
Casteleiro-Roca, J., Calvo-Rolle, J., Meizoso-Lopez, M., Piñón-Pazos, A., Rodríguez-Gómez, B.: New approach for the QCM sensors characterization. Sens. Actuators A Phys. 207, 1–9 (2014)
Sauer, H., Howell, R.: Heat Pump Systems. Krieger Publishing Company, Malabar (1991)
Kakaç, S., Liu, H., Pramuanjaroenkij, A.: Heat Exchangers: Selection, Rating, and Thermal Design, 2nd edn. Taylor & Francis, Philadelphia (2002). Designing for heat transfer
Casteleiro-Roca, J., Calvo-Rolle, J., Meizoso-López, M., Pión-Pazos, A., Rodríguez-Gómez, B.: Bio-inspired model of ground temperature behavior on the horizontal geothermal exchanger of an installation based on a heat pump. Neurocomputing 150(Part A), 90–98 (2015)
Rezaei, A., Kolahdouz, E., Dargush, G., Weber, A.: Ground source heat pump pipe performance with tire derived aggregate. Int. J. Heat Mass Transf. 55(11–12), 2844–2853 (2012)
Cui, P., Li, X., Man, Y., Fang, Z.: Heat transfer analysis of pile geothermal heat exchangers with spiral coils. Appl. Energy 88(11), 4113–4119 (2011)
Calvo-Rolle, J.L., Corchado, E.: A bio-inspired knowledge system for improving combined cycle plant control tuning. Neurocomputing 126, 95–105 (2014)
Calvo-Rolle, J.L., Corchado, E.: A bio-inspired robust controller for a refinery plant process. Logic J. IGPL 20(3), 598–616 (2012)
Jove, E., Aláiz-Moretón, H., Casteleiro-Roca, J.L., Corchado, E., Calvo-Rolle, J.L.: Modeling of bicomponent mixing system used in the manufacture of wind generator blades, pp. 275–285. Springer, Cham (2014)
Calvo-Rolle, J.L., Quintian-Pardo, H., Corchado, E., del Carmen Meizoso-López, M., García, R.F.: Simplified method based on an intelligent model to obtain the extinction angle of the current for a single-phase half wave controlled rectifier with resistive and inductive load. J. Appl. Logic 13(1), 37–47 (2015)
Casteleiro-Roca, J.L., Pérez, J.A.M., Piñón-Pazos, A.J., Calvo-Rolle, J.L., Corchado, E.: Modeling the electromyogram (EMG) of patients undergoing anesthesia during surgery. In: 10th International Conference on Soft Computing Models in Industrial and Environmental Applications, pp. 273–283. Springer (2015)
Casteleiro-Roca, J.L., Calvo-Rolle, J.L., Méndez Pérez, J.A., Roqueñí Gutiérrez, N., de Cos Juez, F.J.: Hybrid intelligent system to perform fault detection on bis sensor during surgeries. Sensors 17(1), 179 (2017)
Quintián, H., Calvo-Rolle, J.L., Corchado, E.: A hybrid regression system based on local models for solar energy prediction. Informatica 25(2), 265–282 (2014)
Casteleiro-Roca, J.L., Quintián, H., Calvo-Rolle, J.L., Corchado, E., del Carmen Meizoso-López, M., Piñón-Pazos, A.: An intelligent fault detection system for a heat pump installation based on a geothermal heat exchanger. J. Appl. Logic 17, 36–47 (2016)
Quintián, H., Casteleiro-Roca, J.L., Perez-Castelo, F.J., Calvo-Rolle, J.L., Corchado, E.: Hybrid intelligent model for fault detection of a lithium iron phosphate power cell used in electric vehicles. In: International Conference on Hybrid Artificial Intelligence Systems, pp. 751–762. Springer (2016)
Alaiz Moretn, H., Calvo-Rolle, J.L., Garca, I., Alonso Alvarez, A.: Formalization and practical implementation of a conceptual model for PID controller tuning. Asian J. Control 13(6), 773–784 (2011)
Quintian Pardo, H., Calvo Rolle, J.L., Fontenla Romero, O.: Application of a low cost commercial robot in tasks of tracking of objects. Dyna 79(175), 24–33 (2012)
Corchado, E., Abraham, A., Snasel, V.: New trends on soft computing models in industrial and environmental applications. Neurocomputing 109, 1–2 (2013)
Kang, J., Meng, W., Abraham, A., Liu, H.: An adaptive PID neural network for complex nonlinear system control. Neurocomputing 135, 79–85 (2014)
Machón-González, I., López-García, H., Calvo-Rolle, J.L.: A hybrid batch SOM-NG algorithm. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–5. IEEE (2010)
Crespo-Ramos, M.J., Machón-González, I., López-García, H., Calvo-Rolle, J.L.: Detection of locally relevant variables using som-ng algorithm. Eng. Appl. Artif. Intell. 26(8), 1992–2000 (2013)
Garcia, R.F., Rolle, J.L.C., Gomez, M.R., Catoira, A.D.: Expert condition monitoring on hydrostatic self-levitating bearings. Expert Syst. Appl. 40(8), 2975–2984 (2013)
Calvo-Rolle, J.L., Machón-González, I., López-García, H.: Neuro-robust controller for non-linear systems. Dyna 86(3), 308–317 (2011)
Calvo-Rolle, J.L., Fontenla-Romero, O., Pérez-Sánchez, B., Guijarro-Berdiñas, B.: Adaptive inverse control using an online learning algorithm for neural networks. Informatica 25(3), 401–414 (2014)
Wojnowicz, M., Chisholm, G., Wallace, B., Wolff, M., Zhao, X., Luan, J.: Suspend: Determining software suspiciousness by non-stationary time series modeling of entropy signals. Expert Syst. Appl. 71, 301–318 (2017)
Peng, H., Kitagawa, G., Tamura, Y., Xi, Y., Qin, Y., Chen, X.: A modeling approach to financial time series based on market microstructure model with jumps. Appl. Soft Comput. 29, 40–51 (2015)
Wohler, C., Anlauf, J.K.: An adaptable time-delay neural-network algorithm for image sequence analysis. IEEE Trans. Neural Netw. 10(6), 1531–1536 (1999)
Peddinti, V., Povey, D., Khudanpur, S.: A time delay neural network architecture for efficient modeling of long temporal contexts. In: INTERSPEECH, pp. 3214–3218 (2015)
Gupta, A.: Computational Intelligence in Time Series Forecasting: Theory and Engineering Applications, A. K. Palit, and D. Popovic, 362 pp. Springer, London (2005). ISBN: 1852339489. (International Journal of Robust and Nonlinear Control 17(4), 351–354 (2007))
Bontempi, G., Ben Taieb, S., Borgne, Y.-A.: Machine learning strategies for time series forecasting, pp. 62–77. Springer, Heidelberg (2013)
Menezes, Jr., J.M.P., Barreto, G.A.: Long-term time series prediction with the NARX network: An empirical evaluation. Neurocomputing 71(16–18), 3335–3343 (2008). Advances in Neural Information Processing (ICONIP 2006)/Brazilian Symposium on Neural Networks (SBRN 2006)
Pisoni, E., Farina, M., Carnevale, C., Piroddi, L.: Forecasting peak air pollution levels using NARX models. Eng. Appl. Artif. Intell. 22(4–5), 593–602 (2009)
Acknowledgments
We would like to thank the ‘Instituto Enerxético de Galicia’ (INEGA) and ‘Parque Eólico Experimental de Sotavento’ (Sotavento Foundation) for their technical support on this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Baruque, B., Jove, E., Casteleiro-Roca, J.L., Porras, S., Calvo-Rolle, J.L., Corchado, E. (2018). Bioclimatic House Heat Exchanger Behavior Prediction with Time Series Modeling. In: Pérez García, H., Alfonso-Cendón, J., Sánchez González, L., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding. SOCO ICEUTE CISIS 2017 2017 2017. Advances in Intelligent Systems and Computing, vol 649. Springer, Cham. https://doi.org/10.1007/978-3-319-67180-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-67180-2_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67179-6
Online ISBN: 978-3-319-67180-2
eBook Packages: EngineeringEngineering (R0)