Abstract
One of the main challenges in anesthesia is the proposal of safe and efficient methods to administer drugs to regulate the pain that the patient is sufffering during the surgical process. First steps towards this objective is the proposal of adequate indexes that correlate well with analgesia. One of the most promising index is ANI (Antinociception Index). This research focuses on the modelling of the ANI response in patients undergoing general anesthesia with intravenous drug infusion. The aim is to predict the ANI response in terms of the analgesic infusion rate. For this a model based on intelligent regression techniques is proposed. To create the model, it has been checked Artificial Neural Networks (ANN) and Support Vector Regression (SVR). Results were validated using data from patients in the operating room. The measured performance attest for the potential of the proposed technique.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mendez, J.A., Marrero, A., Reboso, J.A., Leon, A.: Adaptive fuzzy predictive controller for anesthesia delivery. Control Eng. Pract. 46, 1–9 (2016)
Marrero, A., Méndez, J.A., Reboso, J.A., Martín, I., Calvo, J.L.: Adaptive fuzzy modeling of the hypnotic process in anesthesia. J. Clin. Monit. Comput. 31(2), 319–330 (2017)
Casteleiro-Roca, J., Calvo-Rolle, J., Meizoso-Lopez, M., Pion-Pazos, A., Rodriguez-Gmez, B.: New approach for the QCM sensors characterization. Sens. Actuators A 207, 1–9 (2014)
Crespo-Ramos, M.J., Machón-González, I., López-García, H., Calvo-Rolle, J.L.: Detection of locally relevant variables using SOM-NG algorithm. Eng. Appl. Artif. Intell. 26(8), 1992–2000 (2013)
Cowen, R., Stasiowska, M.K., Laycock, H., Bantel, C.: Assessing pain objectively: the use of physiological markers. Anaesthesia 70(7), 828–847 (2015)
Casteleiro-Roca, J.L., Pérez, J.A.M., Piñón-Pazos, A.J., Calvo-Rolle, J.L., Corchado, E.: Modeling the Electromyogram (EMG) of Patients Undergoing Anesthesia During Surgery. Springer International Publishing, Cham (2015)
Ghanghermeh, A., Roshan, G., Orosa, J.A., Calvo-Rolle, J.L., Costa, A.M.: New climatic indicators for improving urban sprawl: a case study of Tehran city. Entropy 15(3), 999–1013 (2013)
Calvo-Rolle, J.L., Quintian-Pardo, H., Corchado, E., del Carmen Meizoso-López, M., García, R.F.: Simplified method based on an intelligent model to obtain the extinction angle of the current for a single-phase half wave controlled rectifier with resistive and inductive load. J. Appl. Log. 13(1), 37–47 (2015)
Calvo-Rolle, J.L., Fontenla-Romero, O., Pérez-Sánchez, B., Guijarro-Berdinas, B.: Adaptive inverse control using an online learning algorithm for neural networks. Informatica 25(3), 401–414 (2014)
Casteleiro-Roca, J.L., Calvo-Rolle, J.L., Meizoso-López, M.C., Piñón-Pazos, A., Rodríguez-Gómez, B.A.: Bio-inspired model of ground temperature behavior on the horizontal geothermal exchanger of an installation based on a heat pump. Neurocomputing 150, 90–98 (2015)
Machón-González, I., López-García, H., Calvo-Rolle, J.L.: A hybrid batch SOM-NG algorithm. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–5. IEEE (2010)
Alaiz Moretón, H., Calvo Rolle, J., García, I., Alonso Alvarez, A.: Formalization and practical implementation of a conceptual model for PID controller tuning. Asian J. Control 13(6), 773–784 (2011)
Rolle, J., Gonzalez, I., Garcia, H.: Neuro-robust controller for non-linear systems. Dyna 86(3), 308–317 (2011)
García, R.F., Rolle, J.L.C., Gomez, M.R., Catoira, A.D.: Expert condition monitoring on hydrostatic self-levitating bearings. Expert Syst. Appl. 40(8), 2975–2984 (2013)
Calvo-Rolle, J.L., Casteleiro-Roca, J.L., Quintián, H., del Carmen Meizoso-Lopez, M.: A hybrid intelligent system for PID controller using in a steel rolling process. Expert Syst. Appl. 40(13), 5188–5196 (2013)
García, R.F., Rolle, J.L.C., Castelo, J.P., Gomez, M.R.: On the monitoring task of solar thermal fluid transfer systems using NN based models and rule based techniques. Eng. Appl. Artif. Intell. 27, 129–136 (2014)
Quintián, H., Calvo-Rolle, J.L., Corchado, E.: A hybrid regression system based on local models for solar energy prediction. Informatica 25(2), 265–282 (2014)
Quintian Pardo, H., Calvo Rolle, J.L., Fontenla Romero, O.: Application of a low cost commercial robot in tasks of tracking of objects. Dyna 79(175), 24–33 (2012)
Wasserman, P.: Advanced Methods in Neural Computing, 1st edn. Wiley, New York (1993)
Zeng, Z., Wang, J.: Advances in Neural Network Research and Applications, 1st edn. Springer, Heidelberg (2010)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Kaski, S., Sinkkonen, J., Klami, A.: Discriminative clustering. Neurocomputing 69(13), 18–41 (2005)
Casteleiro-Roca, J.L., Calvo-Rolle, J.L., Méndez Pérez, J.A., Roqueñí Gutiérrez, N., de Cos Juez, F.J.: Hybrid intelligent system to perform fault detection on BIS sensor during surgeries. Sensors 17(1), 179 (2017)
Fernández-Serantes, L.A., Vázquez, R.E., Casteleiro-Roca, J.L., Calvo-Rolle, J.L., Corchado, E.: Hybrid intelligent model to predict the SOC of a LFP power cell type. In: International Conference on Hybrid Artificial Intelligence Systems, pp. 561–572. Springer International Publishing (2014)
Li, Y., Shao, X., Cai, W.: A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples. Talanta 72(1), 217–222 (2007)
Casteleiro-Roca, J.L., Quintián, H., Calvo-Rolle, J.L., Corchado, E., del Carmen Meizoso-López, M., Piñón-Pazos, A.: An intelligent fault detection system for a heat pump installation based on a geothermal heat exchanger. J. Appl. Log. 17, 36–47 (2016)
Acknowledgments
Authors greatly appreciate the support both from Spanish Ministry of Economy and Competitiveness through grant AYA2014-57648-P, and from regional Ministry of Economy and Employment through grant FC-15-GRUPIN14-017. Jose M. Gonzalez-Cava’s research was supported by the Spanish Ministry of Education, Culture and Sport (www.mecd.gob.es), under the “Formación de Profesorado” grant FPU15/03347.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Jove, E., Gonzalez-Cava, J.M., Casteleiro-Roca, J.L., Pérez, J.A.M., Calvo-Rolle, J.L., de Cos Juez, F.J. (2018). An Intelligent Model to Predict ANI in Patients Undergoing General Anesthesia. In: Pérez García, H., Alfonso-Cendón, J., Sánchez González, L., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding. SOCO ICEUTE CISIS 2017 2017 2017. Advances in Intelligent Systems and Computing, vol 649. Springer, Cham. https://doi.org/10.1007/978-3-319-67180-2_48
Download citation
DOI: https://doi.org/10.1007/978-3-319-67180-2_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67179-6
Online ISBN: 978-3-319-67180-2
eBook Packages: EngineeringEngineering (R0)