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Abstract. The evolution of malicious software (malware) analysis tools
provided controlled, isolated, and virtual environments to analyze mal-
ware samples. Several services are found on the Internet that provide
to users automatic system to analyze malware samples, as VirusTotal,
Jotti, or ClamAV, to name a few. Unfortunately, malware is currently in-
corporating techniques to recognize execution onto a virtual or sandbox
environment. When analysis environment is detected, malware behave as
a benign application or even show no activity. In this work, we present an
empirical study and characterization of automatic public malware analy-
sis services. In particular, we consider 26 different services. We also show
a set of features that allow to easily fingerprint these services as analysis
environments. Finally, we propose a method to mitigate fingerprinting.

1 Introduction

In the last few years, there has been a steady growth in the number and complex-
ity of applications with non-legitimate intentions (known as malicious software,
or malware). Similarly, Symantec reports an increase from 252 million of malware
variants in 2013 to 317 million in 2014 [14].

To detect the malicious behavior of a binary file, an binary analysis is per-
formed, mainly considering its interaction with the OS and the network. The
huge number of malware samples, however, makes manual analysis unfeasible.
Thus, several methods were developed to automatize analysis using the prin-
ciple of isolation, in particular, using virtual environment and sandboxes. An
automatic malware analysis service allow any user to upload files to be analyzed
using different means, such as web forms, API REST, or others. Once submitted,
the file is analyzed and a report is given indicating whether it is malicious.

Cybercriminals enhance their malware by adding new malicious functions
to detect when they are being analyzed (and then behave beningly), since the
longer the malware stays as no malicious file, the more likely the cybercriminals
earn more income. Malware with capabilities of analysis detection are named as
analysis-aware or split personality malware [1, 8]. These detection mechanisms
are mainly based either on indirect techniques (i.e., time or event triggered)
or on direct techniques as binary analysis, sandboxing, or virtual and memory
analysis [12].
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In this work, we present an empirical study and characterization of 26 differ-
ent automatic public malware analysis services (PMAS)3. We also analyze their
configuration individually to observe recurrent patterns that might be used by
analysis-aware malware to succeed on analysis recognition. Finally, we propose
a method to improve the degree of concealment of a PMAS.

This paper is organized as follows. Section 2 reviews related work. Section 3
introduces our characterization of PMAS. Then, in Section 4 we describe our
methodology to obtain data from a PMAS server and discuss our preliminary
results. Our proposal to improve the degree of concealment of PMAS is intro-
duced in Section 5. Section 6 concludes the paper and states future work.

2 Related Work

There are several works in the literature regarding the presence (or absence)
of an analysis system. Numerous techniques for virtual machines and emulators
detection were provided in [6,11]. They qualitatively compared those techniques,
although no quantitative assessment was provided. Recently, methods to finger-
print anti-virus emulators were introduced in [2].

In [3], static analysis was used to detect anti-analysis techniques. Similarly,
dynamic analysis was used in [7] to detect 78 anti-analysis signatures based on
sequences of system calls over 2810 malware samples.

Detection of anti-analysis malware was performed in [4] comparing the binary
execution between real and virtual environments. However, no insights about
analysis-aware techniques used by the malware were provided. Different methods
to detect Cuckoo Sandbox, an open-source tool to create a sandbox environment
for statically and dynamically analyzing binaries, were provided (along with
countermeasures) in [5].

A taxonomy and non-exhaustive survey on techniques used for detecting
analysis environments were introduced in [12]. Besides, a tool was provided to
trick an anti-analysis malware sample running on a virtual environment as run-
ning on a real environment. A recent study on detection of anti-analysis malware
has been recently provided in [15], in which anti-analysis signals are divided into
weak signals, strong signals, and composite signals, depending on those signals
are normally used by a benign software or by a malware.

Other techniques for detecting execution on hypervisors using time informa-
tion were provided in [10, 16]. Detection based on unexpected semantics when
executing certain CPU instructions was also proposed in [13].

Recently, the FFRI malware dataset was used in [9] to evaluate the most used
analysis detection methods. Their approach was based on analyzing Windows
APIs calls and results were used to improve Cuckoo Sandbox system.

Regarding PMAS fingerprinting, it is worth mentioning [17]. They evaluated
15 PMAS, being able to fingerprint them using as feature the IP source address
of network responses. Our work is similar to theirs, but we perform a more
exhaustive analysis of features to fingerprint PMAS.

3 In this paper, we indistinguishably use PMAS as singular and plural acronym.
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3 Characterization of Public Malware Analysis Services

PMAS allow users to send a file, analyze it, and report whether it is classified
as malware or as benign software. In this paper, we have finally evaluated 26
PMAS. To characterize each of these services, we consider the following features:

– How the suspicious files are sent to the service. Here, we consider
methods as external application, web form, email, or others.

– Where the analysis is done. The service may perform the analysis on its
own infrastructure, or otherwise, use other infrastructures (metaservice). A
well-known example of metaservice is VirusTotal, which checks the submit-
ted file with a bunch of anti-virus solutions.

– How the analysis report is given to the user. The report can be given to
the user through a report file, a web page, or by email. The report may have,
besides, different information granularity. For instance, some services just
report whether the suspicious file is malware, while others provide a detailed
report regarding malware behavior in the system (mainly, interaction of the
file with the OS – files, processes, and Windows registry – and with the
Internet). Some services only reports about new files created, while others
also provide the content of new files.

– Price of the service. We distinguish between free, paid, or freemium (basic
options for free plus advanced options by subscription) services.

– Accepted file types. Each service may accept different file types and from
different OSes. Some services also allow to upload URLs for scanning.

Table 1 summarizes the characterization of the different services that we
consider in the paper, regarding the features aforementioned ( “N/A” means
not available, i.e., we do not have enough knowledge to state a conclusion). We
initially considered 100 PMAS, although they were reduced to 26 by different
reasons4. For instance, some of the services are only paid services. Then, we
only considered free services or freemium. Furthermore, some well-know PMAS
as Anubis have been discontinued and evolved to systems aimed at providing
professional services to large companies or institutions.

4 Experiments and Discussion

4.1 Experiment Description

For experimentation, we developed a Windows executable file. Thus, from the
initial 100 PMAS we discarded also the ones that focus on different filetypes.
We aim at testing these services as future work.

The Windows executable file used as probe was specifically crafted for ob-
taining information about the PMAS upon execution. During execution, network
packages are sent to a web server under our control to collect the data. The wor-
fkflow diagram to collect data is shown in Fig. 1. These steps are as follows:

4 Microsoft is composed by Microsoft Other, Microsoft Defender 10, Microsoft De-
fender 8, Microsoft Defender 7, Microsoft Vista, XP, Essentials and Others
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Service App send form metaservice Report Report Data Price Document
Specified Accepted Url’s Operating System

Filetype Platform

360TotalSecurity Online form, Yes Email N/A Free EXE No N/A
Mail N/A

Jotti Online Form Yes WebPage Hash Information Free EXE, DMG No Desktop OS
JPG, PDF, APK, . . . Win, MacOSX, Linux

Mobile OS
UploadMalware Online Form Yes Webpage Hash Information Free JPG, PDF, APK, . . . No Win, MacOSX, Linux

Mobile OS
Virustotal Online Form Yes Webpage Depends of the file Free Executables YesYes Desktop OS

Mail (platform) images,doc,flash Win, MacOSX, Linux
Public API Apk, ipa

External App office
BleepingComputer Online Form N/A No No Free N/A No N/A
Roboscan External app N/A Email Malware or not Free Several No N/A
Fortinet Online Form N/A Email N/A Free PEx No Windows
Microsoft Online Form N/A Webpage Malware or not Free PEs No Windows

PDF, flash, office
Bitdefender Online Form N/A Email N/A Free PEs, DMG Yes Multiplatform

APK, Flash, OFFICE
Sophos Online Form N/A Email N/A Free Several Yes Multiplatform
F-Secure Online Form No Email Malware or not Free PEs, DMG Yes Desktop OS
Avira Online Form No Email Malware or not Free EXE, DMG Yes Desktop OS

Webpage
PayloadSecurity Online Form No Webpage Created files paths Freemium PE, Office, PDF Yes Windows

Keychan, File Details APK files and more Android
Network details (e.g. EML)

McAfee External app No N/A N/A Free PEs No Windows
Email

Malwr Online Form No Webpage Created files paths Free PEs No Windows
Registry PDF, Office, ASCII

Network activity Flash, Java
ClamAv Online Form No Email N/A Free Several No N/A
Valkyrie Online Form No Webpage Created files paths Freemium PEs Yes Windows

Registry
PE Imports

Zoner Online Form No Email N/A Free N/A No Multiplatform
ThreatAnalyzer Online Form No WebPage Several Paid Several No Windows

File (allow you to
choose versions)

SonicWall Online Form No N/A N/A Free N/A No N/A
AVG Online Form No N/A N/A Free Several No Multiplatform
Symantec Online Form No N/A N/A Free Several Yes Multiplatform

External app
Nanoav Online Form No Email Malware or not Free N/A No N/A

Table 1. Characterization of Public Malware Analysis Systems.
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Fig. 1. Workflow diagram to collect PMAS information.

1. Our probe is specifically crafted for a given PMAS. Then, the probe is sent
to that PMAS.

2. The probe can be sent by the PMAS to another external service by the
analysis service, or otherwise, the PMAS analyze the probe itself.

3. The sample is analyzed in a PMAS (or in an external service). The sample
sends network packages to our server with the information obtained from
the PMAS that analyzed it.

4. Network packages are sent from the PMAS to our server. Thus, we obtain
from what source IP address packages are coming.

5. Requests are are collected in our server. Finally, data is parsed and analyzed.

Although we initially sent our probe to 70 services, we only received responses
from 26 services. Response dataset date from April 2016 to January 2017. Sur-
prisingly, we observed that multiple responses were obtained from certain ser-
vices. This indicates that some services executed the probe multiple times. Fig. 2
shows the response ratio of received over sent probes. Although it is unknown
in some cases whether the PMAS is a metaservice, we assumed that it might be
a metaservice when the ratio is greater than 5.

PMAS that use external engines to analyze malware (metaservices) are shown
in left-hand side of Fig. 2 (red bars). Services which do not indicate clearly
whether they sent file to external engines are shown in yellow bars. Finally,
services using own engines are shown in right-hand side (blue bars).

4.2 Machine Characterization

We characterized each PMAS considering both physical level (hardware) and
logical level (software). Specific features that we collected are depicted in Fig. 3.
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Fig. 2. Ratio of samples received for each probe sent.
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Fig. 3. Software (left-hand) and hardware (right-hand) characterization features.
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(a) BuildLabEx

40.78%

28.26%

12.68%

7.00%

11.12%

2600.xpsp.080413-2111
7601.win7sp1_rtm.101119-1850
2600.xpsp_sp2_rtm.040803-2158
10586.th2_release.151121-2308
Others

(b) Build Lab

54.82%

45.18%

32bits
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Fig. 4. Characterization of (a, b) Windows versions and (c) OS architecture width.
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Regarding software, we distinguished between static data (i.e., data that are
not modified at runtime) and dynamic data. As dynamic data, we distinguish
elements belonging to Internet connectivity, such asopen ports, Local IP address,
and external IP address. Data of interest as ISP or country can be extracted
from these elements. As static part, we consider different elements: environment
variable paths, paging file, and OS-related data (such as Product ID, i.e., the
Windows product identifier; Build Lab, i.e., the Windows version; or Build Lab
Ex, i.e., extended information of Windows version). Regarding the OS’s user
account, we collected the registered owner, user domain, logon server (that is,
network machine name), Profile Guid, and user name.

Regarding hardware, we consider hard drive serial number, BIOS date, RAM
size, CPU processors number, processor model, and MAC address of the machine.

4.3 Discussion

As previously described, we only obtained responses from 26 different PMAS.
In particular, the number of responses were, in total, 7680 over 1500 sent. Note
that the number of received responses is sensitively greater than those sent. This
is mainly motivated because some PMAS analyzed the probes several times, as
well as metaservices received a report from each external service used.

Some responses were discarded, since they contain no value regarding fea-
tures of interest (see Section 4.2). We believe that this is motivated by several
reasons: (i) the response was unable to reach our server; (ii) the execution of
the file was stopped prior a normal finishing its activity (i.e., a timeout or an
exception occurs); or (iii) the PMAS does not allow to access to that values (or
are unavailable for that particular OS version of the PMAS). As last step, we
normalized responses to have an equal response distribution among PMAS.

For the sake of space, in the following we briefly discuss some of the charac-
terization features under study.

Fig 4 shows results of OS-related data. Although 20.22% of responses were
obtained (BuildLabEx), we observe a prevalence of Windows 7 as OS. Let us re-
mark here that for certain OSes, as Windows XP, this value cannot be obtained.
In this regard, the field of BuildLab becomes more useful (46.22% of responses
obtained). Surprisingly, Windows XP is found in different flavors (with SP1 or
SP2 installed) in little more than half of responses, and Windows 7 SP1 is more
than 25%. Data coming from BuildLabEx was used to infer the OS architecture
width. As shown, 32-bit and 64-bit are almost equally distributed.

Fig.5 plots the characterization of CPUs used by PMAS (we just received a
16.65% of responses), considering CPU model, family, and architecture width.
Results show a prevalence of QEMU-based virtualization systems. For instance,
Intel Core i7 9xx (Nehalem Class Core i7) (GenuineIntel) is one of the CPU
models that can be chosen when configuring a QEMU virtual machine. Regard-
ing CPU family, we observed a high ratio of Intel Xeon technology. Regarding
CPU architecture width, more that 95% are 64-bit CPUs, although the OS ar-
chitecture was just a half when considering data coming from software.
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Fig. 5. Characterization of CPUs of PMAS.
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Fig. 6. Characterization of IP addresses of PMAS.
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Fig. 7. Distribution of Username.
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Fig. 9. Theoretical model to evade PMAS fingerprinting.
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Regarding Internet connectivity, we had 86.49% data responses. Results of
characterization of local IP addresses are shown in Fig. 6. Note that we obtained
a huge diversity in results, without a clear prevalence of any value although the
three most common IP addresses represent more than a 25%. If we consider IP
address classes, class A is the most common IP address class. This IP address
class is normally used in business and non-domestic environments.

Regarding username, we obtained 49.33% valid responses. Fig. 7 shows the
distribution of these values. Note that Administrator, abby, and Admin represents
more than 50% of collected usernames.

Regarding HardDrive serial number, we obtained 57.06% valid responses.
Results are plotted in Fig. 8. Note that 00000000000000000001, QM00001, and
9VS21J20 represent almost a 50% of collected values.

5 Evasion of PMAS Fingerprinting

The aforementioned features have frequently repeated values and hence, they
allow to easily fingerprint a PMAS. Here, we propose a theoretical model (see
Fig. 9) to evade PMAS fingerprinting when malware is dynamically analyzed. To
collect PMAS features, malware needs to execute certain Windows APIs. Thus,
we propose to monitor those APIs and return random values. To avoid detection
by checking result of consecutive monitored API calls, we propose to fingerprint
each file (e.g., using its MD5 hash), keep track of results given to a specific file,
and then return always the same results. This theoretical model may prevent a
malware to fingerprint and recognize a PMAS, regardless the features checked.

6 Conclusions and Future Work

Software with malicious intentions (malware) have increased in number and com-
plexity during last decade. To detect it, automatic public malware analysis ser-
vices (PMAS) are used. These services allow users to upload files and report them
about its malicious behavior. Thus, malware started to introduce techniques to
detect these analysis environments and behave as benign software.

In this paper, we presented an empirical study of PMAS. In particular, we
have characterized 26 different PMAS regarding different features (how the files
are sent to the service, where the analysis is done, how the report is given, price
of the service, and accepted file types). Then, we have developed an application
to fingerprint hardware and software features of those PMAS. Our results show
that few features (such as OS, CPU, or username) are enough to fingerprint
some of those PMAS. Finally, we proposed a (theoretical) execution model to
evade PMAS fingerprintg.

As future work, we aim at identifying the relationships between PMAS and
fingerprinting each PMAS in detail. Furthermore, we aim at implementing and
evaluating our evasion model.
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was supported by INCIBE according to the rule 19 of the Digital Confidence Plan
and by the University of León under contract X43. The research of R. J. Rodŕıguez
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