Skip to main content

Abstract

The aim of the present paper is to verify whether the cognitive load can be evaluated through the analysis of the examined person’s response time and extracted EEG signal features. The research was based on an experiment consisting of six intervals ensuring various cognitive load level of arithmetic tasks. The paper describes in details the analysis process including signal pre-processing with artifact correction, feature extraction and outlier detection. Statistical verification of EEG band differences, response time and error rate in intervals was realised. Statistical correlations were found between EEG features and response time, however, the correlation strength increased inside the groups of intervals of similar cognitive workload level. Evoked related potentials were also analysed and their results confirmed the statistical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gevins, A., Smith, M.E., McEvoy, L., Yu, D.: High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb. Cortex 7, 374–385 (1997). doi:10.1093/cercor/7.4.374

    Article  Google Scholar 

  2. Kruger, J., Doherty, S.: Measuring cognitive load in the presence of educational video: towards a multimodal methodology. Australas. J. Educ. Technol. 32, 19–31 (2016). doi:10.14742/ajet.3084

    Article  Google Scholar 

  3. Hancock, P.A., Chignell, M.H.: Mental workload dynamics in adaptive interface design. IEEE Trans. Syst. Man. Cybern. 18, 647–658 (1988)

    Article  Google Scholar 

  4. O’Donnell, R.D., Eggemeier, F.T.: Workload assessment methodology. In: Handbook of perception and human performance, vol. 2. Cognitive Processes and Performance. Wiley (1986)

    Google Scholar 

  5. Hart, S.G.: Nasa-Task Load Index (NASA-TLX); 20 years later. Proc. Hum. Factors Ergon. Soc. Annu. Meet 50, 904–908 (2006). doi:10.1177/154193120605000909

    Article  Google Scholar 

  6. Matthews, G., Reinerman-Jones, L.E., Barber, D.J., Abich IV, J.: The psychometrics of mental workload: multiple measures are sensitive but divergent. Hum. Factors 57, 125–143 (2015)

    Article  Google Scholar 

  7. Ren, P., Barreto, A., Huang, J., Gao, Y., Ortega, F.R., Adjouadi, M.: Off-line and on-line stress detection through processing of the pupil diameter signal. Ann. Biomed. Eng. 42, 162–176 (2014). doi:10.1007/s10439-013-0880-9

    Article  Google Scholar 

  8. Kumar, N., Kumar, J.: Measurement of cognitive load in HCI systems using EEG power spectrum: an experimental study. Proc. Comput. Sci. 84, 70–78 (2016). doi:10.1016/j.procs.2016.04.068

    Article  Google Scholar 

  9. Zarjam, P., Epps, J., Chen, F.: Spectral EEG features for evaluating cognitive load. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 3841–3844 (2011). Annual Conference

    Google Scholar 

  10. Brouwer, A., Hogervorst, M.A., van Erp, J.B.F., Haufe, S., Kim, J., Kim, I., Acqualagna, L., Bosse, S., Porbadnigk, A.K., Marchal-crespo, L., Zimmermann, R., Lambercy, O., Schultze-kraft, M., Dähne, S., Gugler, M.: Unsupervised classification of operator workload from brain signals This. J. Neural Eng. 13, 1–15 (2016). doi:10.1088/1741-2560/13/3/036008

    Google Scholar 

  11. Chang, H., Hung, I., Chew, S.W., Chen, N.: Yet another objective approach for measuring cognitive load using EEG-based workload, 501–502 (2016). doi:10.1109/ICALT.2016.145

  12. Zarjam, P., Epps, J., Chen, F., Lovell, N.H.: Classification of working memory load using wavelet complexity features of EEG signals. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) Neural Information Processing: 19th International Conference, ICONIP 2012, Doha, Qatar, 12–15 November 2012, Proceedings, Part II, pp. 692–699. Springer, Heidelberg (2012)

    Google Scholar 

  13. Sereno, S.C., Rayner, K.: Measuring word recognition in reading: eye movements and event-related potentials. Trends Cogn. Sci. 7, 489–493 (2003). doi:10.1016/j.tics.2003.09.010

    Article  Google Scholar 

  14. Marshall, S.P.: The index of cognitive activity: measuring cognitive workload. In: Proceedings of IEEE 7th Conference on Human Factors and Power Plants, pp. 5–9 (2002). doi:10.1109/HFPP.2002.1042860

  15. Porter, G., Troscianko, T., Gilchrist, I.D.: Effort during visual search and counting: insights from pupillometry Gillian. Q. J. Exp. Psychol. 60, 211–229 (2007). doi:10.1080/17470210600673818

    Article  Google Scholar 

  16. Ryu, K., Myung, R.: Evaluation of mental workload with a combined measure based on physiological indices during a dual task of tracking and mental arithmetic. Int. J. Ind. Ergon. 35, 991–1009 (2005). doi:10.1016/j.ergon.2005.04.005

    Article  Google Scholar 

  17. Zarjam, P., Epps, J., Lovell, N.H.: Beyond Subjective Self-Rating: EEG Signal Classification of Cognitive Workload (2015)

    Google Scholar 

  18. Kruger, J.-L., Hefer, E., Matthew, G.: Measuring the impact of subtitles on cognitive load : eye tracking and dynamic audiovisual texts. In: Proceedings of Eye Tracking South Africa, pp. 6–11 (2013)

    Google Scholar 

  19. Rozado, D., Duenser, A.: Combining EEG with pupillometry to improve cognitive workload detection. Comput. (Long. Beach. Calif). 48, 18–25 (2016). doi:10.1109/MC.2015.314

    Google Scholar 

  20. Borys, M., Tokovarov, M., Wawrzyk, M., Wesołowska, K.: An Analysis of eye-tracking and electroencephalography data for cognitive load measurement during arithmetic tasks, pp. 287–292 (2017)

    Google Scholar 

  21. Haapalainen, E., Kim, S., Forlizzi, J.F., Dey, A.K.: Psycho-physiological measures for assessing cognitive load. In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, pp. 301–310. ACM, New York (2010)

    Google Scholar 

  22. Light, G.A., Williams, L.E., Minow, F., Sprock, J., Rissling, A., Sharp, R., Swerdlow, N.R., Braff, D.L.: Electroencephalography (EEG) and event-related potentials (ERPs) with human participants. Curr. Protoc. Neurosci. 6–25 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Kaczorowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Plechawska-Wójcik, M., Borys, M., Tokovarov, M., Kaczorowska, M. (2018). Measuring Cognitive Workload in Arithmetic Tasks Based on Response Time and EEG Features. In: Borzemski, L., Świątek, J., Wilimowska, Z. (eds) Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017. ISAT 2017. Advances in Intelligent Systems and Computing, vol 655. Springer, Cham. https://doi.org/10.1007/978-3-319-67220-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67220-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67219-9

  • Online ISBN: 978-3-319-67220-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics