Abstract
Nowadays, obesity and hypertension are two global health problems that affect the quality of life of people and thus their work life. The Internet of Things (IoT) is a paradigm in which everyday objects are equipped with identification, detection, interconnection, and processing capabilities that allow them to communicate with one another and with other devices and services through the Internet to achieve some goal. The IoT great opportunities for monitoring, analyzing, diagnosing, controlling and providing treatment recommendations for chronic-degenerative diseases, such as obesity and hypertension. In this work, we design a smart healthcare platform architecture based on the IoT paradigm; the paper also discusses important literature associating obesity, hypertension, and other chronic-degenerative diseases with the applications of the IoT paradigm. Finally, to validate our architecture, we present the case study of an elderly patient suffering from overweight and hypertension.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
World Health Organization. Obesity and overweight (2017). http://www.who.int/mediacentre/factsheets/fs311/en/
World Health Organization. WHO/ISH Hypertension guidelines (2017). http://www.who.int/cardiovascular_diseases/guidelines/hypertension/en/
Li, L., Li, S., Zhao, S.: QoS-aware scheduling of services-oriented Internet of Things. IEEE Trans. Ind. Inf. 10, 1497–1505 (2014). doi:10.1109/TII.2014.2306782
Xu, L.D., He, W., Li, S.: Internet of Things in industries: a survey. IEEE Trans. Ind. Inf. 10, 2233–2243 (2014). doi:10.1109/TII.2014.2300753
Bhatt, Y., Bhatt, C.: Internet of Things in HealthCare. In: Bhatt, C., Dey, N., Ashour, A.S. (eds.) Internet of Things and Big Data Technologies for Next Generation Healthcare. SBD, vol. 23, pp. 13–33. Springer, Cham (2017). doi:10.1007/978-3-319-49736-5_2
Krawczyk, B., Woźniak, M.: Hypertension type classification using hierarchical ensemble of one-class classifiers for imbalanced data. In: Bogdanova, A.M., Gjorgjevikj, D. (eds.) ICT Innovations 2014. AISC, vol. 311, pp. 341–349. Springer, Cham (2015). doi:10.1007/978-3-319-09879-1_34
Vazquez-Briseno, M., Navarro-Cota, C., Nieto-Hipolito,J.I., Jimenez-Garcia, E., Sanchez-Lopez, J.D.: A proposal for using the Internet of Things concept to increase children’s health awareness. In: 2012 22nd International Conference on Electrical Communications and Computers (CONIELECOMP), pp. 168–172 (2012). doi:10.1109/CONIELECOMP.2012.6189903
Vilollonga, R., Lecube, A., Fort, J.M., Boleko, M.A., Hidalgo, M., Armengol, M.: Internet of Things and bariatric surgery follow-up: comparative study of standard and IoT follow-up. Minim. Invasive Ther. Inf. Healthcare 22, 304–311 (2013). doi:10.3109/13645706.2013.779282
Mun Lee, B., Ouyang, J.: Application protocol adapted to health awareness for smart healthcare service. Adv. Sci. Technol. Lett. 43, 101–104 (2013). doi:10.14257/astl.2013.43.21
Zaragozá, I., Guixeres, J., Alcañiz, M., Cebolla, A., Saiz, J., Álvarez, J.: Ubiquitous monitoring and assessment of childhood obesity. Pers. Ubiquit. Comput. 17, 1147–1157 (2013). doi:10.1007/s00779-012-0562-x
Mun Lee, B., Ouyang, J.: Intelligent healthcare service by using collaborations between IoT personal health devices. Int. J. Bio-Science Bio-Technology 6, 155–164 (2014). doi:10.14257/ijbsbt.2014.6.1.17
Hiremath, S., Yang, G., Mankodiya, K.: Wearable Internet of Things: concept, architectural components and promises for person-centered healthcare. In: 2014 EAI 4th International Conference on Wireless Mobile Communication and Healthcare (Mobihealth), pp. 304–307 (2014). doi:10.4108/icst.mobihealth.2014.257440
Vazquez, M., Jimenez, E., Nieto, J.I., Sanchez, J.D.D., Garcia, A., Torres, J.P.: Development of a mobile health architecture to prevent childhood obesity. IEEE Lat. Am. Trans. 13, 1520–1527 (2015). doi:10.1109/TLA.2015.7112010
Kim, K.K., Logan, H.C., Young, E., Sabee, C.M.: Youth-centered design and usage results of the iN Touch mobile self-management program for overweight/obesity. Pers. Ubiquit. Comput. 19, 59–68 (2015). doi:10.1007/s00779-014-0808-x
Alloghani, M., Hussain, A., AI-Jumeily, D., Fergus, P., Abuelma’atti, O., Hamden, H.: A Mobile Health Monitoring Application for Obesity Management and Control Using the Intemet-of-Things, pp. 19–24. IEEE (2016). doi:10.1109/ICDIPC.2016.7470785
Wibisono, G., Astawa, I.G.B.: Designing Machine-to-Machine (M2M) prototype system for weight loss program for obesity and overweight patients. In: 7th International Conference on Intelligent Systems, Modelling and Simulation, pp. 138–143 (2016). doi:10.1109/ISMS.2016.52
Dobbins, C., Rawassizadeh, R., Momeni, E.: Detecting physical activity within lifelogs towards preventing obesity and aiding ambient assisted living. Neurocomputing 230, 1–23 (2016). doi:10.1016/j.neucom.2016.02.088
Shin, S.-A., Lee, N.-Y., Park, J.-H.: Empirical study of the IoT-learning for obese patients that require personal training. In: Park, J.J.(Jong Hyuk), Pan, Y., Yi, G., Loia, V. (eds.) Advances in Computer Science and Ubiquitous Computing. LNEE, vol. 421, pp. 1005–1012. Springer, Singapore (2017). doi:10.1007/978-981-10-3023-9_156
Antonovici, D.A., Chiuachisan, I., Geman, O., Tomegea, A.: Acquisition and management of biomedical data using Internet of Things concepts. In: IEEE - 2014 International Symposium on Fundamentals of Electrical Engineering, pp. 1–4 (2014). doi:10.1109/ISFEE.2014.7050625
Akutekwe, A., Seker, H.: A hybrid dynamic Bayesian network approach for modeling temporal associations of gene expressions for hypertension diagnosis. In: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 804–807 (2014). doi:10.1109/EMBC.2014.6943713
Deen, M.J.: Information and communications technologies for elderly ubiquitous healthcare in a smart home. Pers. Ubiquit. Comput. 19, 573–599 (2015). doi:10.1007/s00779-015-0856-x
Jeong, J.S., Han, O., You, Y.Y.: A design characteristics of smart healthcare system as the IoT application. Indian J. Sci. Technol. 9, 1–8 (2016). doi:10.17485/ijst/2016/v9i37/102547
Gupta, P.K., Maharaj, B.T., Malekian, R.: A novel and secure IoT based cloud centric architecture to perform predictive analysis of users activities in sustainable health centres. Multimedia Tools Appl. 76, 1–24 (2016). doi:10.1007/s11042-016-4050-6
Chen, M., Ma, Y., Song, J., Lai, C.F., Hu, B.: Smart clothing: connecting human with clouds and big data for sustainable health monitoring. Mob. Netw. Appl. 21, 825–845 (2016). doi:10.1007/s11036-016-0745-1
Jung, H.: A conceptual framework for trajectory-based medical analytics with IoT contexts. J. Comput. Syst. Sci. 82, 610–626 (2016). doi:10.1016/j.jcss.2015.10.007
Lake, D., Milito, R., Morrow, M., Vargheese, R.: Internet of Things: architectural framework for eHealth security. J. ICT, 3 & 4, 301–328 (2014). doi:10.13052/jicts2245-800X.133
Zhang, H., Song, H.: Ubiquitous WSN for healthcare: recent advances and future prospects. IEEE IoT J. 4, 311–318 (2014). doi:10.1109/JIOT.2014.2329462
Santos, J., Rodrigues, J.P.C., Silva, B., Casal, J., Saleem, K., Denisov, V.: An IoT-based mobile gateway for intelligent personal assistants on mobile health environments. J. Netw. Comput. Appl. 71, 194–204 (2016). doi:10.1016/j.jnca.2016.03.014
Hossain, M.S., Muhammad, G.: Cloud-assisted industrial Internet of Things (IIoT) – enabled framework for health monitoring. Comput. Netw. 101, 192–202 (2016). doi:10.1016/j.comnet.2016.01.009
Jara, A.J., Zamora, M.A., Skarmeta, A.F.G.: An Internet of Things–based personal device for diabetes therapy management in ambient assisted living (AAL). Pers. Ubiquit. Comput. 15, 431–440 (2011). doi:10.1007/s00779-010-0353-1
Paschou, M., Sakkopoulos, E., Sourla, E., Tsakalidis, A.: Health Internet of Things: metrics and methods for efficient data transfer. Simul. Model. Pract. Theor. 34, 186–199 (2013). doi:10.1016/j.simpat.2012.08.002
Gia, T.N., Thanigaivelan, N.K., Rahmani, A.M., Westerlund, T., Liljeberg, P., Tenhunen, H.: Customizing 6lowpan networks towards internet-of-things based ubiquitous healthcare systems. In: NORCHIP, pp. 1–6. IEEE (2014). doi:10.1109/NORCHIP.2014.7004716
Jung, E.Y., Kim, J., Chung, K.Y., Park, D.K.: Mobile healthcare application with EMR interoperability for diabetes patients. Cluster Comput. 17, 871–880 (2013). doi:10.1007/s10586-013-0315-2
Hu, L., Ong, D.M., Zhu, X., Liu, Q., Song, E.: Enabling RFID technology for healthcare: application, architecture, and challenges. Telecommun. Syst. 58, 259–271 (2015). doi:10.1007/s11235-014-9871-x
Kumar, K.M.C.: Internet of fitness things – a move towards quantified health: concept, sensor-cloud network, protocols and a new methodology for OSA patients. In: 2015 IEEE Recent Advances in Intelligent Computational Systems (RAICS), pp. 364–369 (2015). doi:10.1109/RAICS.2015.7488443
Ganzha, M., Paprzycki, M., Pawłowski, W., Szmeja, P., Wasielewska, K.: Semantic interoperability in the Internet of Things: an overview from the INTER-IoT perspective. J. Netw. Comput. Appl. 81, 1–23 (2016). doi:10.1016/j.jnca.2016.08.007
Raza, M., Hoa Le, M., Aslam, N., Hieu Le, C., Tam Le, N., Ly Le, T.: Telehealth Technology: Potentials, Challenges and Research Directions for Developing Countries. IFMBE Proceedings, pp. 233–236. Springer (2016)
Camara-Brito, J.M.: Trends in wireless communications towards 5G networks – the influence of e-health and IoT applications. In: International Multidisciplinary Conference on Computer and Energy Science (SpliTech), pp. 1–7 IEEE (2016). doi:10.1109/SpliTech.2016.7555949
Ifrim, C., Pintilie, A.-M., Apostol, E., Dobre, C., Pop, F.: The art of advanced healthcare applications in big data and IoT systems. In: Mavromoustakis, C.X., Mastorakis, G., Dobre, C. (eds.) Advances in Mobile Cloud Computing and Big Data in the 5G Era. SBD, vol. 22, pp. 133–149. Springer, Cham (2017). doi:10.1007/978-3-319-45145-9_6
Li, S., Xu, L.D., Zhao, S.: The Internet of Things: a survey. Inf. Syst. Front. 17, 243–259 (2015). doi:10.1007/s10796-014-9492-7
Acknowledgments
This work was supported by Tecnológico Nacional de México (TecNM) and sponsored by the National Council of Science and Technology (CONACYT), the Secretariat of Public Education (SEP) through PRODEP (Programa para el Desarrollo Profesional Docente) and the Sistema de Universidades Estatales de Oaxaca (SUNEO).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Machorro-Cano, I. et al. (2017). An IoT-Based Architecture to Develop a Healthcare Smart Platform. In: Valencia-García, R., Lagos-Ortiz, K., Alcaraz-Mármol, G., Del Cioppo, J., Vera-Lucio, N., Bucaram-Leverone, M. (eds) Technologies and Innovation. CITI 2017. Communications in Computer and Information Science, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-319-67283-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-67283-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67282-3
Online ISBN: 978-3-319-67283-0
eBook Packages: Computer ScienceComputer Science (R0)