Skip to main content

A Photogrammetry Software as a Tool for Precision Agriculture: A Case Study

  • Conference paper
  • First Online:
Technologies and Innovation (CITI 2017)

Abstract

Traditionally, agriculture is practiced by performing tasks such as planting or harvesting against a predetermined schedule. However, collecting real-time data can help farmers to make the best decisions about planting, fertilizing and harvesting crops. This approach is known as precision agriculture. In this context, interest in technological tools to adapt crop management strategies is growing. Hence, this research aims to analyze and compare the photogrammetry-based tools for the treatment of images in the agricultural domain. Furthermore, a case study of the land of the Agrarian University of Ecuador Experimental Research Center based in Mariscal Sucre, located in Milagro is presented. This study involves taking several photos by means of a drone and analyzing them with a photogrammetric software to obtain an orthophoto. This product can help to perform relative biomass analysis, drought stress, irrigation scheduling, predicting agricultural production, monitoring nutrition, pests and diseases that are affecting the photographed crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrett, J.R., Jones, D.D., Thompson, T.L.: Knowledge systems development in U.S. agriculture. Expert Syst. Appl. 4, 45–51 (1992)

    Article  Google Scholar 

  2. Shekhar, S., Xiong, H.: Encyclopedia of GIS. Springer, New York (2008)

    Book  Google Scholar 

  3. Abdullahi, H.S., Mahieddine, F., Sheriff, R.E.: Technology impact on agricultural productivity: a review of precision agriculture using unmanned aerial vehicles (2015)

    Google Scholar 

  4. Thorp, K.: Precision Agriculture (2014)

    Google Scholar 

  5. Chang, Y.K., Zaman, Q.U., Farooque, A., Chattha, H., Read, S., Schumann, A.: Sensing and control system for spot-application of granular fertilizer in wild blueberry field. Precis. Agric. 18, 210–223 (2017)

    Article  Google Scholar 

  6. Gillan, J.K., Karl, J.W., Barger, N.N., Elaksher, A., Duniway, M.C.: Spatially explicit rangeland erosion monitoring using high-resolution digital aerial imagery. Rangel. Ecol. Manag. 69, 95–107 (2016)

    Article  Google Scholar 

  7. Rokhmana, C.A.: The potential of UAV-based remote sensing for supporting precision agriculture in Indonesia. Procedia Environ. Sci. 24, 245–253 (2015)

    Article  Google Scholar 

  8. Lamb, D.W., Brown, R.B.: PA—Precision Agriculture. J. Agric. Eng. Res. 78, 117–125 (2001)

    Article  Google Scholar 

  9. Gómez-Candón, D., De Castro, A.I., López-Granados, F.: Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat. Precis. Agric. 15, 44–56 (2014)

    Article  Google Scholar 

  10. Ouédraogo, M.M., Degré, A., Debouche, C., Lisein, J.: The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds. Geomorphology 214, 339–355 (2014)

    Article  Google Scholar 

  11. Gan, H., Lee, W., Alchanatis, V.: A photogrammetry-based image registration method for multi-camera systems. In: Proceedings of 14th International Conference on Precision Agriculture

    Google Scholar 

  12. Aasen, H.: The acquisition of Hyperspectral Digital Surface Models of crops from UAV snapshot cameras (2016)

    Google Scholar 

  13. Ram, E., Shechter, M., Sela, E.: High capacity system for precision agriculture reconnaissance and intelligence. In: 13th International Conference on Precision Agriculture, St. Louis, MO, USA (2016)

    Google Scholar 

  14. Duncan, B.A., Murphy, R.R.: Comparison of flight paths from fixed-wing and rotorcraft small unmanned aerial systems at SR530 mudslide Washington state. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 3416–3421. IEEE (2015)

    Google Scholar 

  15. Schwind, M.: Comparing and characterizing three-dimensional point clouds derived by structure from motion photogrammetry (2016). http://gradworks.umi.com/10/24/10247379.html

  16. Staller, J.E., Thompson, R.G.: A multidisciplinary approach to understanding the initial introduction of maize into Coastal Ecuador. J. Archaeol. Sci. 29, 33–50 (2002)

    Article  Google Scholar 

  17. Agisoft - User Manuals. http://www.agisoft.com/downloads/user-manuals/

  18. Visockiene, J.S., Brucas, D., Ragauskas, U.: Comparison of UAV images processing softwares. J. Meas. Eng. 2, 111–121 (2014)

    Google Scholar 

  19. Pix4D - Offline Getting Started and Manual. https://support.pix4d.com/hc/en-us/articles/204272989-Offline-Getting-Started-and-Manual-pdf-#gsc.tab=0

  20. Govorcin, M., Pribicevic, B., Dapo, A.: Comparison and analysis of software solutions for creation of a digital terrain model using unmanned aerial vehicles. In: 14th International Multidisciplinary Scientific GeoConference SGEM 2014 - Geoconference on Informatics (2014)

    Google Scholar 

  21. Psirofonia, P., Samaritakis, V., Panagiotis Eliopoulos, I.P.: Use of unmanned aerial vehicles for agricultural applications with emphasis on crop protection: three novel case-studies. Int. J. Agric. Sci. Technol. 5, 30–39 (2017)

    Google Scholar 

  22. Park, J.W., Jeong, H.H., Kim, J.S., Choi, C.U.: Development of open source-based automatic shooting and processing UAV imagery for Orthoimage Using Smart Camera UAV. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B7, 941–944 (2016)

    Google Scholar 

  23. Micheletti, N., Chandler, J.H., Lane, S.N.: Structure from motion (SFM) photogrammetry. In: Book Chapters (Civil and Building Engineering). Zenrin (1995)

    Google Scholar 

  24. Morgan, J.A., Brogan, D.J., Nelson, P.A.: Application of Structure-from-Motion photogrammetry in laboratory flumes. Geomorphology 276, 125–143 (2017)

    Article  Google Scholar 

  25. Brocks, S., Bareth, G.: Evaluating dense 3D reconstruction software packages for oblique monitoring of crop canopy surface. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B5, 785–789 (2016)

    Google Scholar 

  26. Shelestov, A.Y., Kravchenko, A.N., Skakun, S.V., Voloshin, S.V., Kussul, N.N.: Geospatial information system for agricultural monitoring. Cybern. Syst. Anal. 49, 124–132 (2013)

    Article  Google Scholar 

  27. Tempelmann, U., Borner, A., Chaplin, B., Uebbing, R.: Photogrammetric software for the LH Systems ADS40 Airborne Digital Sensor. ISPRS (2000)

    Google Scholar 

  28. James, D., Eckermann, J., Belblidia, F., Sienz, J.: Point cloud data from Photogrammetry techniques to generate 3D Geometry (PDF Download Available). In: ACME 2015 (2015)

    Google Scholar 

  29. Şanlıoğlu, İ., Zeybek, M., Karauğuz, G.: Photogrammetric survey and 3D modeling of Ivriz rock relief in late Hittite Era. Mediterr. Archaeol. Archaeom. 13, 147–157 (2013)

    Google Scholar 

  30. Pokrovenszki, K., Vágvölgyi, B., Tóth, Z.: Practical experience with the 3D photogrammetric methods used at the excavation of Csókakő castle. J. F. Archaeol. 40, 325–346 (2015)

    Article  Google Scholar 

  31. Machovina, B.L., Feeley, K.J., Machovina, B.J.: UAV remote sensing of spatial variation in banana production. Crop Pasture Sci. 67, 1281 (2016)

    Article  Google Scholar 

  32. Miserque Castillo, J.Z., Laverde Diaz, R., Rueda Guzmán, C.L.: Development of an aerial counting system in oil palm plantations. IOP Conf. Ser. Mater. Sci. Eng. 138, 12007 (2016)

    Article  Google Scholar 

  33. An, N., Welch, S.M., Markelz, R.J.C., Baker, R.L., Palmer, C.M., Ta, J., Maloof, J.N., Weinig, C.: Quantifying time-series of leaf morphology using 2D and 3D photogrammetry methods for high-throughput plant phenotyping. Comput. Electron. Agric. 135, 222–232 (2017)

    Article  Google Scholar 

  34. Herrero-Huerta, M., González-Aguilera, D., Rodriguez-Gonzalvez, P., Hernández-López, D.: Vineyard yield estimation by automatic 3D bunch modelling in field conditions. Comput. Electron. Agric. 110, 17–26 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlota Delgado-Vera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Delgado-Vera, C., Aguirre-Munizaga, M., Jiménez-Icaza, M., Manobanda-Herrera, N., Rodríguez-Méndez, A. (2017). A Photogrammetry Software as a Tool for Precision Agriculture: A Case Study. In: Valencia-García, R., Lagos-Ortiz, K., Alcaraz-Mármol, G., Del Cioppo, J., Vera-Lucio, N., Bucaram-Leverone, M. (eds) Technologies and Innovation. CITI 2017. Communications in Computer and Information Science, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-319-67283-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67283-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67282-3

  • Online ISBN: 978-3-319-67283-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics