Skip to main content

Improved Tau-Guidance and Vision-Aided Navigation for Robust Autonomous Landing of UAVs

  • Conference paper
  • First Online:
Field and Service Robotics

Abstract

In many unmanned aerial vehicle (UAV) applications, flexible trajectory generation algorithms are required to enable high levels of autonomy for critical mission phases, such as take-off, area coverage, and landing. In this paper, we present a guidance approach which uses the improved intrinsic tau guidance theory to create spatio-temporal 4-D trajectories for a desired time-to-contact with a landing platform tracked by a visual sensor. This allows us to perform maneuvers with tunable trajectory profiles, while catering for static or non-static starting and terminating motion states. We validate our method in both simulations and real platform experiments by using rotary-wing UAVs to land on static platforms. Results show that our method achieves smooth landings within 10 cm accuracy, with easily adjustable trajectory parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bloesch, M., Omari, S., Hutter, M., Siegwart, R.: Robust visual inertial odometry using a direct EKF-based approach. In: IEEE/RSJ Intenational Conference on Intelligent Robots and Systems, pp. 298–304. IEEE, Hamburg (2015)

    Google Scholar 

  2. Cocchioni, F., Mancini, A., Longhi, S.: Autonomous navigation, landing and recharge of a quadrotor using artificial vision. In: International Conference on Unmanned Aircraft Systems, pp. 418–429 (2014)

    Google Scholar 

  3. Dunbabin, M., Marques, L.: Robots for environmental monitoring: significant advancements and applications. IEEE Robot. Autom. Mag. 19(1), 24–39 (2012)

    Article  Google Scholar 

  4. Ezequiel, C.A.F., Cua, M., Libatique, N.C., Tangonan, G.L., Alampay, R., Labuguen, R.T., Favila, C.M., Honrado, J.L.E., Canos, V., Devaney, C., Loreto, A.B., Bacusmo, J., Palma, B.: UAV aerial imaging applications for post-disaster assessment, environmental management and infrastructure development. In: International Conference on Unmanned Aircraft Systems, pp. 274–283 (2014)

    Google Scholar 

  5. Furrer, F., Burri, M., Achtelik, M., Siegwart, R.: Rotors-a modular gazebo MAV simulator framework, vol. 1, pp. 595–625. Springer International Publishing (2016)

    Google Scholar 

  6. Gautam, A., Sujit, P.B., Saripalli, S.: A survey of autonomous landing techniques for UAVs. In: International Conference on Unmanned Aircraft Systems, pp. 1210–1218 (2014)

    Google Scholar 

  7. Kamel, M., Stastny, T., Alexis, K., Siegwart, R.: Model predictive control for trajectory tracking of unmanned aerial vehicles using robot operating system, pp. 3–39. Springer International Publishing, Cham (2017)

    Google Scholar 

  8. Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot. 29(2), 315–378 (2012)

    Article  Google Scholar 

  9. Kendoul, F.: Four-dimensional guidance and control of movement using time-to-contact: application to automated docking and landing of unmanned rotorcraft systems. Int. J. Robot. Res. 33(2), 237–267 (2013)

    Article  Google Scholar 

  10. Lee, D.N.: A theory of visual control of braking based on information about time-to-collision. Perception 5(4), 437–459 (1976)

    Article  Google Scholar 

  11. Lee, D.N., Davies, M.N.O., Green, P.R., (Ruud) Van Der Weel, F.R.: Visual control of velocity of approach by pigeons when landing. J. Exp. Biol. 180, 85–104 (1993)

    Google Scholar 

  12. Lynen, S., Achtelik, M.W., Weiss, S., Chli, M., Siegwart, R.: A robust and modular multi-sensor fusion approach applied to MAV navigation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3923–3929. IEEE, Tokyo (2013)

    Google Scholar 

  13. Nex, F., Remondino, F.: UAV for 3D mapping applications: a review. Appl. Geomat. 6(1), 1–15 (2014)

    Article  Google Scholar 

  14. Popovic, M., Hitz, G., Nieto, J., Sa, I., Siegwart, R., Galceran, E.: Online informative path planning for active classification using UAVs. In: IEEE International Conference on Robotics and Automation. IEEE, Singapore (2017a)

    Google Scholar 

  15. Popovic, M., Vidal-Calleja, T., Hitz, G., Sa, I., Siegwart, R., Nieto, J.: Multiresolution mapping and informative path planning for UAV-based terrain monitoring. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver (2017b)

    Google Scholar 

  16. Sa, I., Kamel, M., Khanna, R., Popovic, M., Nieto, J., Siegwart, R.: Dynamic System Identification, and Control for a cost effective open-source VTOL MAV. arXiv:1701.08623 (2017)

  17. Strydom, R., Denuelle, A., Srinivasan, M.V.: Bio-inspired principles applied to the guidance, navigation and control of UAS. Aerospace 3(21) (2016)

    Google Scholar 

  18. Yamasaki, T., Sakaida, H., Enomoto, K., Takano, H., Academy, N.D.: Robust trajectory-tracking method for UAV guidance. In: International Conference on Control, Automation and Systems. IEEE, Seoul (2007)

    Google Scholar 

  19. Yang, Z., Fang, Z., Li, P.: Decentralized 4D trajectory generation for UAVs based on improved intrinsic tau guidance strategy. Int. J. Adv. Robot. Syst. 13(3), 1–13 (2016)

    Google Scholar 

  20. Yoon, S., Kim, Y., Kim, S.: Pursuit guidance law and adaptive backstepping controller design for vision-based net-recovery UAV. In: AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA, Honolulu, HI, August, pp. 1–33 (2008)

    Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 644227 and from the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0029. We would like to thank Marco Tranzatto and Michael Pantic for their valuable insights and platform support, and the ETH Crop Science Group for providing the testing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amedeo Rodi Vetrella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vetrella, A.R. et al. (2018). Improved Tau-Guidance and Vision-Aided Navigation for Robust Autonomous Landing of UAVs. In: Hutter, M., Siegwart, R. (eds) Field and Service Robotics. Springer Proceedings in Advanced Robotics, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-67361-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67361-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67360-8

  • Online ISBN: 978-3-319-67361-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics