Abstract
Anterior cranial base (ACB) is known as the growth-stable structure. Automatic segmentation of the ACB is a prerequisite to superimpose orthodontic inter-treatment cone-beam computed tomography (CBCT) images. The automatic ACB segmentation is still a challenging task because of the ambiguous intensity distributions around fine-grained structures and artifacts due to the limited radiation dose. We propose a fully automatic segmentation of the ACB from CBCT images by a volumetric convolutional network with nested residual connections (NRN). The multi-scale feature fusion in the NRN not only promotes the information flows, but also introduces the supervision to multiple intermediate layers to speed up the convergence. The multi-level shortcut connections augment the feature maps in the decompression pathway and the end-to-end voxel-wise label prediction. The proposed NRN has been applied to the ACB segmentation from clinically-captured CBCT images. The quantitative assessment over the practitioner-annotated ground truths demonstrates the proposed method produces improvements to the state-of-the-arts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Afrand, M., Ling, C.P., Khosrotehrani, S., Flores-Mir, C., Lagravère-Vich, M.O.: Anterior cranial-base time-related changes: a systematic review. Am. J. Orthod. Dentofac. Orthop. 146(1), 21–32 (2014)
Kayalibay, B., Jensen, G., van der Smagt, P.: Cnn-based segmentation of medical imaging data. arXiv:1701.03056 [cs.CV] (2017)
Brosch, T., Tang, L.Y., Yoo, Y., Li, D.K., Traboulsee, A., Tam, R.: Deep 3d convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE TMI 35(5), 1229–1239 (2016)
Cevidanes, L.H., Motta, A., Proffit, W.R., Ackerman, J.L., Styner, M.: Cranial base superimposition for 3-dimensional evaluation of soft-tissue changes. Am. J. Orthod. Dentofac. Orthop. 137(4), S120–S129 (2010)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_49
Coup, P., Tong, T., Misawa, K., Fujiwara, M., Mori, K., Rueckert, D., Glocker, B., Manjn, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)
Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. In: CVPR, pp. 447–456 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-initialization: a new variational formulation. In: CVPR, vol. 1, pp. 430–436 (2005)
Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV, pp. 565–571
Mostajabi, M., Yadollahpour, P., Shakhnarovich, G.: Feedforward semantic segmentation with zoom-out features. In: CVPR, pp. 3376–3385 (2015)
Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: ICCV, pp. 1520–1528 (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_28
Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV, pp. 1395–1403 (2015)
Yu, L., Yang, X., Chen, H., Qin, J., Heng, P.A.: Volumetric convnets with mixed residual connections for automated prostate segmentation from 3d mr images. In: AAAI (2017)
Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S.: Deformable segmentation via sparse shape representation. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 451–458. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23629-7_55
Acknowledgments
This work was supported by National Natural Science Foundation of China under Grant 61272342.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Pei, Y. et al. (2017). Multi-scale Volumetric ConvNet with Nested Residual Connections for Segmentation of Anterior Cranial Base. In: Wang, Q., Shi, Y., Suk, HI., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2017. Lecture Notes in Computer Science(), vol 10541. Springer, Cham. https://doi.org/10.1007/978-3-319-67389-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-67389-9_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67388-2
Online ISBN: 978-3-319-67389-9
eBook Packages: Computer ScienceComputer Science (R0)